Патент способ аэрофотосъемки бпла. Расчет параметров аэрофотосъемки беспилотным летательным аппаратом. Полевые работы аэрофотосъемки с использованием бпла

В одном мы уверены точно: высокая цена не всегда означает высокое качество.

Мы окунемся в индустрию и узнаем, как дроны покажут себя при съемке.

В этом исследовании используются термины и специфический жаргон, но они не помешают вам разобраться в сути. В данном исследовании была произведена обработка данных в DroneDeploy и получена высокая точность привязки - 9 см.


Описание

Топографическая съемка является неотъемлемой частью всех проектов в области землеустройства.

В этом примере мы рассмотрим участок земли, на котором должен был быть построен новый поселок. До начала работ было необходимо провести точную топографическую съемку по нескольким причинам:


  1. Осуществить начальное освоение земель, чтобы спроектировать сток воды для дренажа.
  2. Провести топографическую съемку поймы прилегающей реки для предотвращения возможных наводнений.

Если вы собираетесь открыть собственный отдел беспилотной съемки, готовьтесь к тому, что он станет объектом крупных инвестиций, и в итоге времени на проект может быть потрачено больше.

Геодезия 101

Для традиционной топографической съемки требуется сбор координат точек в заранее определенной сетке. В этом случае использовалась сетка размером 150х150 см:

Измерения производились каждые 150 сантиметров, на каждом перекрестке:


Всего на площади съемки 34,5 Га было собрано 1632 координаты.

Без дрона, снимающего со скоростью 20 точек/час (1 точка, каждые 3 минуты), сбор данных занял бы приблизительно 82 часа.


82 часа традиционной съемки означают, что инженер вынужден ждать как минимум неделю, чтобы приступить к обработке данных. Далее понадобится еще 3-4 дня, прежде чем работа будет сделана.

Проведя ту же съемку с использованием БПЛА, полевая команда смогла предоставить разработчику более быстрый вариант обзора.

Прежде всего, не нужно было собирать 1600 точек по всей площади. Вместо этого потребовалась съемка всего 10 наземных меток, расположенных в зоне обзора:

Для более крупных проектов Наземные опорные точки (GCP) лучше расставить по сетке.

10 наземных меток или 1632 точки:

10 опорных меток могут быть сделаны за 1-2 часа.

Те, кто знаком с фотограмметрией, знают, что точки, собранные с поверхности воды - неприемлемы для использования в подобных съемках.

Завершив сбор GCP, были собраны точки традиционным методом в участках со стоячей водой - комбинация двух методов, описанных выше.

Конечные собранные точки:


В итоге мы получили 117 точек (10 GCP + 107 на участках со стоячей водой).

Время на съемку:

Теоретически: 10 наземных меток + сбор точек = 1-2 часа

Фактически: 117 точек (10 GCP + 107 на участках со стоячей водой) при скорости сбора 20 точек / час = 5,85 часа

Традиционный метод: 1,632 точки при скорости сбора 20 точек / час = 81,6 часа



В течение часа были завершены все действия с БПЛА, включая сборку, предполетные проверки, запуск, посадку, разборку и первоначальную сшивку карты.


Таким образом мы получили:

БПЛА (1 час) + сбор точек (5,8 часа) =

Общее время полевых работ: 6,8 часа

Сравнение:

34,5 Га/ полевые работы с использованием БПЛА = 6,8 часа

34,5 Га/ полевые работы по традиционному методу = 81,6 часа

Общая экономия: 74,8 часа

Анализ данных

После проведения полевых работ, полученные данные требуют тщательной обработки. Сначала обрабатываются наземные метки, при этом при этом их позиция должна быть полностью скорректирована.

Далее, скорректированные точки (файл.las) должны быть экспортированы для создания основы топографических данных. Однако, большое количество точек в файле.las означает, что начальные топографические контуры выходят довольно грубыми:


Контуры должны быть сглажены, чтобы впоследствии создать согласованную линию, не теряя точность. В ином случае полученные данные - непригодны.

После 2 дней дополнительной обработки, результирующие топографические контуры стали точными в пределах 9 сантиметров, как по горизонтали (X, Y), так и по вертикали (Z):





Общие сроки выполнения проекта:

Метод с использованием БПЛА::

Полевые работы (6.8 часов) + обработка данных (24 часа) =

30,8 часов (около 4 дней)

Обычный метод:

Полевые работы (81,6 часов) + Обработка данных (24 часа)=

105,6 часов (около 13 дней)



Используя технологию с использованием беспилотника, инженер получил окончательный топографический обзор примерно за 75 часов

По полученным данным выяснилось, что:

1. Требуется дополнительное освоение земель, чтобы построить сточный дренаж в низколежащих районах, где вода удерживается.

2. Работники теперь смогут эффективно прогнозировать и планировать даты строительства дорог, домов и т.д.. - что поможет выполнять работы точно в срок.

3. Инженер узнал о недорогой и рентабельной съемке с БПЛА и планирует снова использовать этот метод для проведения окончательного «встроенного» топографического исследования в ближайшие недели.

Здесь Вы можете больше и лучшие модели беспилотников.

Приводим приблизительные расценки на аэросъёмочные работы, осуществляемые при помощи БПЛА.
Расценки могут меняться в зависимости от ПЛОЩАДИ СЪЁМКИ , ТРАНСПОРТНЫХ РАСХОДОВ , ВРЕМЕНИ ГОДА (наличия листвы/снега). Наилучшее соотношение цены/качества/скорости получается в промежутке между таянием снега и появлением листвы на деревьях.
Минимальная площадь съёмки одного объекта 6 км 2 , если есть несколько объектов с расстояниями между ними до 30 км, то мин объём 4 км 2 .

Цена аэрофотосъёмки БПЛА

Цены на аэрофотосъёмку БПЛА приведены на 1 км 2 .
1. Ортофотоплан в WGS84
Масштаб 1:500 (4 см./пикс) – 35 000 рублей 1 км 2 .
Масштаб 1:1000 (7 см./пикс) – 22 000 рублей км 2 .
Масштаб 1:2000 (10 см./пикс) – 17 000 рублей км 2 .
Масштаб 1:5000 (15 см./пикс) – 12 000 рублей км 2 .

2. Создание ортофотоплана с привязкой к местным системам координат:
Масштаб 1:500 + 10 000 рублей км 2 .
Масштаб 1:1000 + 6 000 рублей. км 2 .
Масштаб 1:2000 + 4 500 рублей км 2 .
Масштаб 1:5000 + 3 000 рублей км 2 .

3. Построение ЦМР или горизонталей:
Сечение 0,5 м + 12 000 рублей за км 2 .
Сечение 1 м + 8 000 рублей за км 2 .
Сечение 2 м + 5 000 рублей за км 2 .

4. Рассекречивание материалов ДЗЗ – 40 000 рублей за объект.
5. Отрисовка топографического плана по результатам съёмки БПЛА: оценивается индивидуально – от 5 000 рублей за км 2 .
Таким образом, стоимость 1 км 2 плана масштаба 1:2 000 при выходе на бумагу будет стоить 34 500, т.е. по 345 р/га – такую цену невозможно получить никаким другим способом!

Для больших площадей съёмки в более крупных масштабах (до 1:500) нами разработан способ комбинированных работ, включающих как съемку при помощи БПЛА, так и тахеометрию с проложением магистрального хода и подсъёмкой основных элементов местности.

Качество не раз проверялось инструментально с земли, в том числе силами заказчиков.

Преимущества технологии аэрофотосъёмки беспилотными летательными аппаратами.

Технология аэрофотосъёмки беспилотными летательными аппаратами развивается уже много лет но только в последнее время подошла по своим точностным характеристикам к классическим способам геодезической съемки и на уровне масштабного ряда от 1:500 и мельче сравнялась с ними. На данный момент АФС БПЛА находится на переднем крае развития геодезических технологий, вытесняя в обширном сегменте такие методы как тахеометрия, спутниковое позиционирование в режимах RTK, пилотируемая АФС, воздушное лазерное сканирование, делая их неконкурентоспособными как по стоимости, так и по срокам.
При больших объемах, слабо залесенной и слабо застроенной площади аэрофотосъемка БПЛА делает нерентабельными тахеометрическую и GPS съемку уже при площади в 70 га. В то же время воздушное лазерное сканирование и пилотируемая аэрофотосъёмка могут конкурировать с БПЛА лишь при объемах от 50 кв. км площадных объектов или от 200 пг км линейных. Итак, на данный момент развития технологий АФС БПЛА достаточно вольготно себе чувствует на открытых территориях в диапазоне объема работ от 0,7 до 50 кв. км.

К недостаткам АФС БПЛА стоит отнести ее метеозависимость и сезонозависимость (снежный покров или наличие очень густой растительности чаще всего препятствует получению достаточного для построения инженерно-топографического плана материала). Следует отметить, что эти факторы абсолютно в той же мере препятствует и другим способам съёмки. В масштабном ряду съёмка ограничена диапазоном от 1:5000 до 1:1000 (мельче 1:5000 целесообразнее использовать космические снимки, крупнее 1:1000 необходимы комбинированные с наземными средствами методы).
Растительность также может влиять на результат. В нашей практике мы сталкивались с бамбуковыми зарослями на южных Курильских островах, которые оказались не просвечиваемы практически на 100%, то же касается тростника заболоченных участков Юга России (например, дельта Волги) и, по всей видимости, тропической растительности юга Черноморского побережья. Лесные массивы средней и северной части страны, а также Сибири и Дальнего Востока, как правило, не являются помехой для АФС БПЛА.
Плотная городская застройка может накладывать ограничения на сам процесс полёта, а также скрывать за своими структурами множество элементов, не видимых сверху. Тем не менее, для таких объектов как СНТ, АФС БПЛА становится незаменимым решением ввиду ограничения доступа на каждый участок, значительно ускоряя процесс съёмки.

Применение аэрофотосъёмки БПЛА

Кроме топографической съёмки беспилотные технологии применяются нами и для различных форм мониторинга, объектами которого могут выступать несанкционированные свалки твердых бытовых отходов, линейные объекты - ЛЭП, трубопроводы, транспортная инфраструктура. Также БПЛА решает вопросы определения объемов земляных масс и их динамики при разработках месторождений открытым способом, карьеров. По сравнению с космическим мониторингов БПЛА дает несоизмеримо более актуальную информацию - при заказе космического снимка на конкретную территорию вы можете либо воспользоваться снимком их архива 1-3 месячной, а то и годовой давности или наоборот, ждать долгое время подходящей телеметрии спутника и своей очереди на съёмку вашей территории – данные с беспилотника вы можете получить в работу через несколько часов.
Аграрный сектор в последнее время становится одним из основных потребителей технологии. Агрохолдинги и крупные сельскохозяйственные объединения, обладающие большими площадями незастроенной и открытой местности, заинтересованы не только в производстве инженерно-геодезических изысканий для реконструкции и нового строительства, но и в мониторинге, инвентаризации сельхозугодий, оценки всхожести культур, прогнозе урожайности, мониторинге эрозионных процессов. Нами используется нормализованный вегетационный индекс (NDVI), позволяющий на основе разности ближней инфракрасной и красной областях спектра определять фотосинтезирующую активность биомассы.

Пространственное разрешение аэрофотоснимков с БПЛА

Сравнение снимка Google и аэрофотоснимка с БПЛА

УДК: 528.71 А.С. Костюк

Западно-Сибирскй филиал «Госземкадастрсъемка» - ВИСХАГИ, Омск

РАСЧЕТ ПАРАМЕТРОВ И ОЦЕНКА КАЧЕСТВА АЭРОФОТОСЪЕМКИ С БПЛА

В статье рассмотрены особенности расчета параметров аэрофотосъемки с малых беспилотных летательных аппаратов (БПЛА). Изложен способ оперативной оценки качества аэрофотосъемки с БПЛА.

West-Siberian branch «Goszemkadastrsyomka» - VISHAGI 4 Prospect Mira, Omsk, 644080, Russian Federation

CALCULATION OF THE PARAMETERS AND EVALUATION OF QUALITY WITH UAV AERIAL PHOTOGRAPHY

The article describes the features of calculation of parameters from aerial surveys of small unmanned aerial vehicles (UAVs). Described method for rapid assessment of the quality of aerial photography from unmanned aircraft.

Проведение работ по инвентаризации земель и объектов недвижимости, подготовка документов для постановки на государственный кадастровый учёт и государственная регистрация прав подразумевает выполнение комплекса картографо-геодезических, землеустроительных и кадастровых работ. Для поддержания информации на современном уровне необходим системный мониторинг. Для локального обновления картографического материала интенсивно используемых земель целесообразно использовать беспилотно-пилотируемые летательные аппараты. В Западно-Сибирском филиале предприятия “Госземкадастрсъемка” - ВИСХАГИ разработано несколько летательных аппаратов и все они попадают в весовую категорию до 3,5 кг.

Несмотря на всю простоту любительской съемки с БПЛА, при проведении аэрофотосъемочных работ для целей картографирования возникает ряд проблем, связанных с выбором фотокамеры, устанавливаемой на летательный аппарат, расчетом параметров аэрофотосъемки и оперативной оценке качества материалов аэрофотосъемки.

Выбор фотокамер для целей аэрофотосъемки основан на анализе следующих характеристик: разрешающей способности снимков, физическом размере матрицы, величине угла захвата, веса камеры и её стоимости. Нами была разработана методика присвоения оценочных баллов по каждой характеристике фотоаппарата. Лучшим фотоаппаратом считался фотоаппарат, набравший большую сумму балов. Было исследовано более десяти цифровых камер подходящих для установки на БПЛА из модельного ряда весовой категории до 3,5 кг.

По результатам исследования, наилучшими для целей аэрофотосъемки признаны камеры Canon IXUS-980IS, Pentax Optio-A30 и Sony DSC-W300, их основные характеристики представлены в табл. 1.

Таблица 1 Основные характеристики выбранных фотокамер

Название фотокамеры Длина матрицы, пкс Ширина матрицы, пкс Размер матрицы, " f экв 35 мм кадру, мм Вес, г

Canon IXUS-980IS 4416 3312 1/1.7 36.0 160

Sony DSC-W300 4224 3168 1/1.7 35.0 156

Pentax OptioA30 3648 2736 1/1.8 38.0 150

В настоящее время на беспилотных летательных аппаратах ЗападноСибирского филиала “Госземкадастрсъемка” - ВИСХАГИ установлена фотокамера Pentax Optio-A30. Камера хорошо показала себя во время производственной и экспериментальной аэрофотосъемки. Постоянно развивающаяся технология аэрофотосъемки с БПЛА требует приобретения новых фотокамер и совершенствования методики их выбора.

Расчет параметров аэрофотосъемки изложен в соответствующих нормативных документах. Аэрофотосъемка с малых беспилотных летательных аппаратов имеет ряд особенностей. Превышение допустимых углов наклона снимков, несоблюдение прямолинейности траектории полета, для обеспечения необходимого перекрытия между снимками высокая частота фотографирования и как следствие избыток кадров. Нами была разработана методика расчета следующих параметров аэрофотосъемки с БПЛА: высоты фотографирования, расстояния между маршрутами и между центрами фотографирования на маршруте.

Высота аэрофотосъемки зависит от масштаба создаваемого фотоплана. Величина крайнего пикселя снимка на местности не должна превышать 0.07 мм в масштабе создаваемого фотоплана. Например при создании фотоплана

масштаба 1: 2000 величина пикселя на местности d не должна превышать 0.14 м. Расчет разрешающей способности снимка следует производить для пикселей наиболее удаленных от центра кадра. Схема связи размера крайнего пикселя снимка с местностью показана на рисунке.

На рисунке: f - фокусное расстояние камеры в эквиваленте для 35 мм кадра;

L - длина половины диагонали матрицы, для 35 мм кадра она составит 21.6 мм;

H - высота фотографирования во время АФС;

Рис. 1. Связь размера пикселя снимка с местностью

D - длина половины диагонали снимка на местности.

Из рисунка следует:

d ■ cos(у-Р)

S = ; ; (1) sin у

Hmx = S ■ cos Р; (2)

Расчет максимально допустимой высоты аэрофотосъемки выполняется по формуле (2), где угол в зависит от индивидуальных параметров используемой фотокамеры и может быть рассчитан исходя из величины фокусного расстояния эквивалентного 35 мм кадру.

В зависимости от точности GPS навигации и особенностей пилотирования БПЛА могут быть достигнуты следующие параметры выдерживания самолета на маршруте:

Поперечное смещение от оси маршрута ± 10 м;

Удержание БПЛА на запроектированной высоте ± 15 м;

Расстояние от запроектированного центра фотографирования до точки срабатывания затвора фотоаппарата ± 5 м;

Изменение угла крена БПЛА на маршруте между двумя снимками

Изменение угла тангажа БПЛА на маршруте между двумя снимками

Приведенные параметры полета БПЛА были получены в результате постобработки множества материалов производственной и экспериментальной аэрофотосъемки.

Для расчета расстояния между маршрутами обеспечивающего 30 % поперечное перекрытие при идеальных условиях по формуле (3) вычисляется половина поперечного угла захвата камеры, где Ln^epen - половина ширины 35 мм пленки и составляет 12 мм:

р" = arcctg (------); (3)

Высота полета с учетом погрешности барометрического датчика рассчитывается по формуле (4):

H = H - 20 м (4)

пол max ? V /

Половина ширины захвата местности камерой вычисляется по формуле (5):

D = Hпол ■ tgP"; (5)

Расстояние между маршрутами в идеальных условиях рассчитывается по формуле (6):

где к = 0,7, для обеспечения 30 % поперечного перекрытия снимков.

Для обеспечения надежного сплошного покрытия земной поверхности снимками необходимо учесть максимальные отклонения БПЛА от запроектированного маршрута. Минимальное значение половины ширины захвата местности во время аэрофотосъемки с учетом совокупности погрешностей навигационных данных и пилотирования летательного аппарата вычисляется по формуле (7):

Рш1п = (Нпоп -15м) щ(0- 5°) -10м; (7)

Предельное отклонение между двумя маршрутами составит:

8Р = 2 (Р - Этп); (8)

Расстояние между маршрутами с учетом поперечного смешения БПЛА относительно оси маршрута, удерживания высоты полета и углов наклона камеры, вычисляется по формуле (9):

К = К - §Р ■ (9)

попереч ид? V /

По формулам (1)-(9) вычисляется высота полета БПЛА для выбранных фотоаппаратов и расстояние между маршрутами при создании фотопланов масштаба 1: 2 000. Полученные данные представлены в табл. 2.

Таблица 2 Расчет высоты фотографирования и расстояния между

маршрутами

Название фотокамеры Hmax, м ^ м м Dmin, м м o" Ô Rпопереч, м

Canon IXUS-980IS 520 500 233 106 122 112

Sony DSC-W300 484 464 223 101 116 107

Pentax 0ptio-A30 467 447 198 86 110 87

Расстояние между центрами фотографирования на маршруте рассчитывается по аналогии с расстоянием между маршрутами. По формуле (3) вычисляется половина продольного угла захвата камеры, где L - половина длины 35 мм пленки и составляет 18 мм. Расстояние между центрами фотографирования в идеальных условиях рассчитывается по формуле (6), для обеспечения 60% продольного перекрытия снимков коэффициент к будет равен 0,4. По формуле (7) вычисляется минимальное значение половины длины захвата местности во время АФС. Предельное отклонение расстояния между снимками от рассчитанного вычисляется по формуле (8). Расстояние между центрами фотографирования с учетом погрешности навигационных координат, удерживания высоты полета и углов наклона камеры, рассчитывается по формуле (10):

Результаты полученные в ходе вычисления расстояния между центрами фотографирования вдоль маршрута приведены в табл. 3.

Таблица 3 Расчет расстояния между центрами фотографирования

Название фотокамеры ^ м Dmin, м SD, м Rпрод, м

Canon IXUS-980IS 200 207 87 113

Pentax 0ptio-A30 191 197 83 108

Sony DSC-W300 169 173 78 91

По данным табл. 2 и 3 на примере фотоаппарата Сапоп 1ХШ-98018 составлена карточка параметров аэрофотосъемки с БПЛА для целей получения фотоплана масштаба 1: 2 000._________________________________

Карточка параметров АФС с БПЛА для целей картографирования

Фотокамера: Canon IXUS-980IS

Масштаб АФС: 1: 2 000

Высота полета при АФС: 500 м

Расстояние между маршрутам: ll0 м

Расстояние между центрами фотографирования на маршруте: ll0 м

Допустимое отклонение от оси маршрута: ± l0 м

Допустимое отклонение от запроектированной высоты АФС: ± l5 м

Расстояние срабатывания затвора фотоаппарата от намеченных центров фотографирования вдоль оси маршрута: ± 5 м

Допустимое изменение угла крена БПЛА на маршруте между двумя снимками: 10о

Допустимое изменение угла тангажа БПЛА на маршруте между двумя снимками: 60

Расчет параметров аэрофотосъемки очень важный этап подготовительных работ. Правильно рассчитанные параметры полета позволяют увеличить площадь покрываемую аэрофотосъемкой за один полет и повысить качество материалов аэрофотосъемки.

Для оперативной оценки качества выполнения аэрофотосъемки на нашем предприятии было разработано и внедрено в производство программное обеспечение в виде приложения *.тЬх на базе Маріпіо. Программа позволяет проектировать маршруты согласно рассчитанным параметрам аэрофотосъемки. По полученным данным с борта летательного аппарата в реальном времени строится фактическая траектория полета. В момент прохождения БПЛА над точкой запроектированного центра фотографирования в автоматическом, либо ручном режиме подается команда на срабатывание затвора камеры. По высоте летательного аппарата и его

ориентации в пространстве в момент фотографирования строится условная рамка снимка, по которым можно оперативно оценить покрытие заданной территории аэрофотосъемкой, и, при необходимости, принять решение о повторном прохождении над проблемными участками.

Разработанная методика проектирования аэрофотосъемки с БПЛА позволила существенно сократить время выполнения аэрофотосъемочных работ и повысить качество материалов.

Я геодезист, коллеги из КРОК попросили меня рассказать про то, как мы переделываем дроны, как программируем полёт и как всё потом обрабатываем, превращая снимки, полученные с беспилотника, в детальные ортофотопланы, высокоточные трёхмерные модели местности и топографические планы масштабов 1:500–1:10 000.

Мы с командой попробовали несколько разных дронов и в итоге остановились на «рабочей лошадке» DJI Phantom 4 PRO с несколькими модификациями. Первое и главное, что мы с ним сделали, - это оснастили его геодезическим GNSS-приёмником, который позволяет определять центры фотографирования с сантиметровой точностью.

Стандартный его GPS обеспечивал точность порядка 15–20 метров. Для решения геодезических задач при такой точности нужны либо специальные кресты на земле, либо ещё какое-нибудь извращение вроде раскладывания бумажных тарелок по известным координатам.

Мы делаем и проще, и сложнее: ставим наземную базовую станцию с точно известными координатами, и интегрируем в дрон дополнительный GNSS-приемник и устанавливаем внешнюю антенну. Например, начинали мы с MATRICE 600 c установленной на борту D-RTK системой фирмы DJI, которая была очень громоздкой, дорогой и не удобной для решения геодезических задач.

Потом мы переделали более компактный DJI PHANTOM 4 PRO: удалось интегрировать дополнительное GNSS-оборудование в стандартный корпус. Общая масса беспилотника увеличилась примерно на 100 граммов. Время полёта немного пострадало, но некритично: набора из четырёх батарей хватает для выполнения съемки площадью 200–300 Га.

Фантом дал одну важную возможность - основной набор стал умещаться в ручную кладь пассажирского самолёта. То есть мы можем теперь возить весь комплект оборудования с собой куда угодно очень и очень просто.

Минимальный набор - модифицированный дрон (весь его комплект), геодезический GNSS -приёмник в качестве наземной базовой станции, ноутбук с программой планирования полётов, скачанной картой (для работы без Интернета) и прописанным под точку планом полётов, если была такая возможность заранее. Ещё нужны дополнительные батареи, зарядное устройство (или несколько) и генератор. Мы берём бензиновый генератор, который выполнен в виде кейса, он очень удобен для наших нужд. Либо инвертор для питания от двигателя автомобиля. Для некоторых регионов надо брать ещё обогрев (в частности, для аккумуляторов и рук).

С одного аккумулятора можно отснять 50 Га с разрешением 2–5 сантиметров на пиксель.

Работаем так: приезжаем на место с подробно прописанным заранее (в офисе) заданием для дрона. Мы используем UgCS (это профессиональный довольно дорогой софт для планирования полётов дронов, который в России продаёт и консультирует по интеграции и доработкам КРОК. Конечно, такой софт применим не только в геодезии, им могут пользоваться спасатели, агрономы, строители и т. п., но в этих областях я не силён, поэтому все вопросы - к коллегам из КРОК). В нём мы указываем границы района работ, поперечное перекрытие, высоту фотографирования, и дальше ПО само рассчитает маршрут полёта дрона с учетом особенностей рельефа местности. То есть UgCS нарезает всё как надо: с промежуточными посадками для замены батарей и остальным.

Смотрим, нет ли каких-то неучтённых препятствий, затем ставим базовую станцию GNSS. Координаты наземных точек уточняются приёмником Topcon GR-5.

Чтобы подключить автопилот из GNSS, мы соединяем дрон с пультом, пульт - с планшетом с управляющей программой DJI, а затем планшет - с ноутбуком. Настроить эту связку с ходу непросто. Тут мне существенно помогли коллеги из КРОК: установить, подогнать, протестить до запуска.

Следующий момент в том, что примерно каждый третий объект находится там, где нет стабильного доступа в Интернет. С этим софт справляется. Но бывают и сложные участки, например, горы, где уже начинаются проблемы с распространением сигнала. Именно поэтому мы используем Фантомы: у них есть множество встроенных датчиков для обхода препятствий. Когда он теряет связь, то возвращается назад. Когда не может вернуться назад, то начинает садиться. И эти датчики помогают летать в сложных условиях, таких, как горная местность или в городе. У нас было несколько случаев, когда датчики препятствий помогли избежать аварийной ситуации. Например, в горах эмирата Фуджейра (ОАЭ) мы потеряли связь с дроном, и из-за ветра беспилотник не смог вернуться на точку взлёта. Тогда автопилот принял решение о посадке и по датчикам препятствия посадил дрон в расщелину между двумя склонами горного массива на сравнительно ровную площадку.

Итог полёта дрона - фотографии вот в этих точках (это софт для обработки уже выделяет их центры):

Данные GNSS-измерений скачиваются по Wi-Fi отдельно после завершения полёта, они хранятся на дроне и не транслируются на землю в реальном времени.

Вот облако точек после классификации. Цветом выделены растительность, опоры, провода ЛЭП, здания и сооружения:

А это уже 3D-модель по этому облаку:

На этом коттеджном посёлке задание было простым: 5 см на пиксель, простой ландшафт, минимум деревьев, нет наводок. Мы получили ортофотоплан и совместили его с кадастровым планом:

Он может использоваться для межевания, инвентаризации и кадастровой оценки земельных участков, оценки эффективности использования земельных ресурсов, проектирования развития территорий, проектно-изыскательских работ, реконструкции и развития дорожных сетей, мониторинга состояния наземных и подземных коммуникаций, трубопроводов, ЛЭП и т. п., мониторинга земель с целью охраны, экологического мониторинга границ и площадей земель, подверженных изменению, создания трехмерных моделей местности для ГИС.

Почему UgCS? Потому что других вариантов на рынке особо и нет, всё остальное - любительского уровня. Очень удобно, что любой дрон можно выставить на задание, и он просто полетит: поддерживается вся линейка DJI включая Мавики и ещё с десяток популярных в геодезии дронов. Нет привязки к железу вообще. Очень хорошее планирование - из офиса. Нормальное управление с ноутбука джойстиком или CLICK&GO, хорошее геокодирование изображений для Photoscan или Pix4D. На рынке есть альтернативное ПО без необходимости таскать ноутбук, но с куда меньшим количеством возможностей. Ноутбук - это огромное преимущество, но одновременно и проклятие системы: он сильно усложняет командировки. Зимой всё это становится ещё сложнее из-за того, что батареи всей связки мёрзнут, и приходится работать в перчатках (что не очень точно). Но других вариантов пока нет: либо такие неудобства, либо ограниченные возможности.

Вот пример результата трехмерной модели города:

Вот ещё один объект - трехмерная модель карьера:

Вот такая история.