Принцип суперпозиции и границы его применения. Принцип суперпозиции электрических полей Пример принцип суперпозиции полей

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 , …,Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая силаF, действующая со стороны поля на пробный заряд Q 0 , равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Qi:

Согласно (79.1), и , где Е-напряженность результирующего поля, а Еi - напряженность поля, создаваемого зарядом Qi ;. Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражаетпринцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя.Электрический диполь - система двух равных по модулю разно именных точечных зарядов (+Q, -Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называетсяплечом диполя 1. Вектор

совпадающий по направлению с плечом диполя и равный произведению заряда |Q | на плечо l , называетсяэлектрическим моментом диполя илидипольным моментом (рис. 122).

Рис. 122

где Е+ и Е- - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолжении оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Рис. 123

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Взаимодействие электрических зарядов осуществляется через особый вид материи, порождаемой заряженными частицами - электрическое поле . Электрические заряды изменяют свойства окружающего их пространства. Проявляется это в том, что на помещенный вблизи заряженного тела другой заряд (назовем его пробным ) действует сила (рис. 2). По величине этой силы можно судить об «интенсивности» поля, созданного зарядом q . Для того, чтобы сила, действующая на пробный заряд, характеризовала электрическое поле именно в данной точке пространства, пробный заряд, очевидно, должен быть точечным .

Рисунок 2

Поместив пробный заряд q пр на некотором расстоянии r от заряда q (рис. 2), мы обнаружим, что на него действует сила, величина которой зависит от величины взятого пробного заряда q пр .

Л
егко, однако, видеть, что для всех пробных зарядов отношениеF / q пр будет одно и тоже и зависит лишь от величин q и r , определяющих поле заряда q в данной точке r . Естественно, поэтому, принять это отношение за величину, характеризующую «интенсивность» или, как говорят, напряженность электрического поля (в данном случае поля точечного заряда ):


.

Таким образом, напряженность электрического поля является его силовой характеристикой . Численно она равна силе, действующий на пробный заряд q пр = +1, помещенный в данное поле.

Напряженность поля – вектор . Его направление совпадает с направлением вектора силы , действующей на точечный заряд, помещенный в это поле. Следовательно, если в электрическое поле напряженностью поместить точечный зарядq , то на него будет действовать сила:

Размерность напряженности электрического поля в СИ:
.

Электрическое поле удобно изображать с помощью силовых линий . Силовая линия – линия, вектор касательной к которой в каждой точке совпадает с направлением вектора напряженности электрического поля в этой точке. Принято считать, что силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность) и нигде не прерываются.

Электрическое поле подчиняется принципу суперпозиции (сложения), который можно сформулировать следующим образом: напряженность электрического поля, созданного в некоторой точке пространства системой зарядов, равна векторной сумме напряженностей электрических полей, созданных в этой же точке пространства каждым из зарядов в отдельности:

.

    1. Работа сил электростатического поля, потенциал. Консервативность электростатических сил, связь между е и . Потенциал точечного и распределенного заряда.

Как следует из закона Кулона, сила, действующая на точечный заряд q в электрическом поле, созданном другими зарядами, является центральной . Напомним, что центральной называется сила, линия действия которой направлена по радиус-вектору, соединяющему некоторую неподвижную точку О (центр поля) с любой точкой траектории. Из «Механики» известно, что все центральные силы являются потенциальными . Работа этих сил не зависит от формы пути перемещения тела, на которое они действуют, и равна нулю по любому замкнутому контуру (пути перемещения). В применении к электростатическому полю:

.

То есть, работа сил поля по перемещению заряда q из точки 1 в точку 2 равна по величине и противоположна по знаку работе по перемещению заряда из точки 2 в точку 1, независимо формы пути перемещения. Следовательно, работа сил поля по перемещению заряда может быть представлена разностью потенциальных энергий заряда в начальной и конечной точках пути перемещения:

.

Введем потенциал электростатического поля φ , задав его как отношение:


, (размерность в СИ:
).

Тогда работа сил поля по перемещению точечного заряда q из точки 1 в точку 2 будет:

Разность потенциалов
называется электрическим напряжением. Размерность напряжения, как и потенциала, [U] = B.

Считается, что на бесконечности электрические поля отсутствуют, и значит
. Это позволяет датьопределение потенциала как работы, которую нужно совершить, чтобы переместить заряд q = +1 из бесконечности в данную точку пространства. Таким образом, потенциал электрического поля является его энергетической характеристикой.

Электростатическое поле - поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующаяэлектрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда :

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе).

В каждой точке пространства в данный момент времени существует свое значение вектора (вообще говоря - разное в разных точках пространства), таким образом, - это векторное поле. Формально это выражается в записи

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле , и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности N E .

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).

где - угол между силовой линией и нормалью к площадке dS; - проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен

Так как , то

где - проекция вектора на нормаль и к поверхности dS.

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

    результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов .

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

    Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

    Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий .

    Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

Полей. Поле диполя

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q 1 , Q 2 ,…, Q n .

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая сила F, действующая со стороны поля на пробный заряд Q 0 равна векторной сумме сил F i , приложенных к нему со стороны каждого из зарядов Q;.

Согласно (79.1), F = Q 0 E и F 1 = Q 0 E 1 , где Е - напряженность результирующего поля, а Е 1 - напряженность поля, создаваемого зарядом Q 1 . Подставляя последние выражения в (80.1), получаем

(80.2)

Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь - система двух равных по модулю разноименных точечных зарядов (+Q, - Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи тельному и равный расстоянию между ними, называется плечом диполя l. Вектор

(80.3)

совпадающий по направлению с плечом диполя и равный произведению заряда |Q|на плечо 1, называется электрическим моментом диполя или дипольным моментом (рис. 122).

где Е + и Е_ - напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l /2 ≪ г, поэтому

2. Напряженность поля на перпендикуляре, восставленном к осям из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

где г" - расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор Е в, получим

(80.5)

Подставив в выражение (80.S) значение (80.4), получим

Вектор E g имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).

Теорема Гаусса для электростатического

Поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777-1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен


Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее.

Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Бели замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e 0 , т. е.

(81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Е, полей, создаваемых каждым зарядом в отдельности: . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Q i /e 0 . Следовательно,

(81.2)

Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e 0 . Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю - К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой объемной плотностью p = dQ/dV, различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,

(81.3)

Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:

Если стержень будет очень длинным (бесконечным), т.е. x «a , из (2.2.13) следует (2.2.14) Определим в этом последнем случае также потенциал поля. Для этого воспользуемся связью между напряженностью и потенциалом. Как видно из (2.2.14) в случае бесконечного стержня напряженность в любой точке поля имеет только радиальную составляющую Е . Следовательно потенциал будет зависеть лишь от этой координаты и из (2.1.11) получим - = . (2.2.15) Постоянную в (2.2.5) находят, положив потенциал равным нулю на некотором расстоянии L от стержня, и тогда . (2.2.16) Лекция 2.3 Поток вектора . Теорема Гаусса. Потоком вектора через какую-либо поверхность называется поверхностный интеграл
,

где = – вектор, по направлению совпадающий с нормалью к поверхности ( единичный вектор нормали к поверхности) и по модулю равный площади . Так как под интегралом стоит скалярное произведение векторов, то поток может получаться как положительным, так и отрицательным, в зависимости от выбора направления вектора . Геометрически поток пропорционален числу силовых линий, пронизывающих данную площадку (см. рис.2.3.1).

Теорема Гаусса.

Поток вектора напряженности электрического поля через произвольную

замкнутую поверхность равен алгебраической сумме зарядов, заключенных

внутри этой поверхности, деленной на (в системе СИ)

. (2.3.1)

В случае замкнутой поверхности вектор выбирают от поверхности наружу.

Таким образом, если силовые линии выходят из поверхности, поток будет положительным, а если входят, то – отрицательным.

Расчет электрических полей с помощью теоремы Гаусса.

В ряде случаев напряженность электрического поля по теореме Гаусса рассчи-

тывается достаточно просто. Однако в основе лежит принцип суперпозиции.

Поскольку поле точечного заряда является центрально-симметричным, то поле

центрально-симметричной системы зарядов также будет центрально-симметричным. Простейший пример – поле равномерно заряженного шара. Если распределение заряда обладает осевой симметрией, то и структура поля будет отличаться осевой симметрией. Примером может служить бесконечная равномерно заряженная нить или цилиндр. Если заряд равномерно распределен по бесконечной плоскости, то силовые линии поля будут располагаться симметрично относительно симметрии заряда. Таким образом, указанный метод расчета применяют в случае высокой степени симметрии распределения заряда, создающего поля. Далее приведем примеры расчета таких полей.

Электрическое поле однородно заряженного шара.

Шар радиуса равномерно заряжен с объемной плотностью . Рассчитаем поле внутришара .

Система зарядов центрально-симметричная. В

качестве поверхности интегрирования выберем

сферу радиуса r (r <R ), центр которой совпадает

с центром симметрии заряда (см. рис.2.3.2). Рассчитаем поток вектора через эту поверхность.

Вектор направлен по радиусу. Так как поле

обладает центральной симметрией, то

значение Е будет одинаково во всех точках

выбранной поверхности. Тогда

Теперь найдем заряд, заключенный внутри выбранной поверхности

Отметим, что, если заряд распределен не по всему объему шара, а лишь по его поверхности (задана заряженная сфера ), то напряженность поля внутри будет равна нулю .

Рассчитаем поле вне шара см. рис. 2.3.3.

Теперь поверхность интегрирования полностью охватывает весь заряд шара. Теорема Гаусса запишется в виде

Учтем, что поле центрально симметричное

Окончательно для напряженности поля снаружи заряженного шара получим

Таким образом, поле вне равномерно заряженного шара будет иметь такой же вид, как для точечного заряда, помещенного в центре шара. Тот же результат получим и для равномерно заряженной сферы.

Проанализировать полученный результат (2.3.2) и (2.3.3) можно с помощью графика рис.2.3.4.

Электрическое поле бесконечного равномерно заряженного цилиндра.

Пусть бесконечно длинный цилиндр заряжен равномерно с объемной плотностью .

Радиус цилиндра равен . Найдем поле внутри цилиндра , как функцию

расстояния от оси. Поскольку система зарядов имеет осевую симметрию,

поверхностью интегрирования мысленно выберем также цилиндр меньшего

радиуса и произвольной высоты , ось которого совпадает с осью симметрии задачи (рис.2.3.5). Рассчитаем поток через поверхность этого цилиндра, разбив его на интеграл по боковой поверх-

ности и по основаниям

Из соображений симметрии

следует, что направлен радиально. Тогда, так как силовые линии поля не пронизывают ни одно из оснований выбранного цилиндра,то поток через эти поверхности равен нулю. Поток вектора через боковую поверхность цилиндра запишется:

Подставим оба выражения в исходную формулу теоремы Гаусса (2.3.1)

После несложных преобразований получим выражение для напряженности электрического поля внутри цилиндра

В этом случае также, если заряд распределен только по поверхности цилиндра, то напряженность поля внутри равна нулю.

Теперь найдем поле снаружи заряженного цилиндра

Мысленно выберем в качестве поверхности, через которую будем рассчитывать поток вектора , цилиндр радиуса и произвольной высоты (см. рис. 2.3.6).

Поток запишется так же как и для внутренней области. А заряд, заключенный внутри мысленного цилиндра, будет равен:

После несложных преобразований получим выражение для напряженности электрического

поля снаружи заряженного цилиндра:

Если ввести в этой задаче линейную плотность заряда, т.е. заряд на единице длины цилиндра , то выражение (2.3.5) преобразуется к виду

Что соответствует результату, полученному с помощью принципа суперпозиции (2.2.14).

Как видим зависимости в выражениях (2.3.4) и (2.3.5) разные. Построим график .

Поле бесконечной равномерно заряженной плоскости.

Бесконечная плоскость равномерно заряжена с поверхностной плотностью . Силовые линии электрического поля симметричны относительно этой плоскости, а, следовательно вектор перпендикулярен заряженной плоскости. Мысленно выберем для интегрирования цилиндр произвольных размеров и расположим его как показано на рис.2.3.8. Запишем теорему Гаусса:) бывает удобно ввести скалярную характеристику изменения поля , называемую дивергенцией. Для определения этой характеристики выберем в поле малый объем вблизи некоторой точки Р и найдем поток вектора через поверхность, ограничивающую этот объем. Затем поделим полученную величину на объем и возьмем предел полученного отношения при стягивании объема к данной точке Р . Полученная величина называется дивергенцией вектора

. (2.3.7)

Из сказанного следует . (2.3.8)

Это соотношение носит название теорема Гаусса – Остроградского , оно справедливо для любого векторного поля.

Тогда из (2.3.1) и (2.3.8), принимая во внимание, что заряд, заключенный в объеме V, можно записать получим

или, так как в обеих частях уравнения интеграл берется по одному и тому же объему,

Это уравнение математически выражает теорему Гаусса для электрического поля в дифференциальной форме.

Смысл операции дивергенция состоит в том, что она устанавливает наличие источников поля (источников силовых линий). Точки, в которых дивергенция не равна нулю, являются источниками силовых линий поля. Таким образом, силовые линии электростатического поля начинаются и заканчиваются на зарядах.