Школьная энциклопедия. Основные виды механического движения Сообщение по физике виды движений

Механическое движение

Определение 1

Изменение расположения тела (или его частей) касательно других тел называют механическим движением.

Пример 1

Например, человек, двигающийся на эскалаторе в метро, пребывает в покое касательно самого эскалатора и двигается сравнительно стен туннеля; гора Эльбрус находится в покое условно Земли и движется вместе с Землей относительно Солнца.

Мы видим, что надо указать точку, относительно которой рассматривается перемещение, это именуется телом отсчета. Точка отсчета и система координат, с которой она соединена, а также избранный метод измерения времени составляют концепцию отсчета.

Перемещение тела, где все его точки двигаются одинаково, называется поступательным. Чтобы найти скорость $V$ с которым движется тело, нужно путь $S$ разделить на время $T$.

$ \frac{S}{T} = {V}$

Движение тела вокруг некоторой оси есть вращательное. При таком ходе все точки тела совершают продвижение по местности, центром которых считается эта ось. И хотя колёса делают вращательное движение вокруг своих осей, в то же время происходит поступательное движение вместе с кузовом машины. Значит, сравнительно оси колесо совершает вращательное движение, а касательно дороги – поступательное.

Определение 2

Колебательное движение – такое периодическое перемещение, которое тело совершает по очереди в двух противоположных направлениях. Самый простой пример - маятник в часах.

Поступательное и вращательное – самые простые виды механического передвижения.

Если точка $X$ изменяет свое расположение относительно точки $Y$, то и $Y$ меняет свое положение относительно $X$. Иначе говоря, тела двигаются относительно друг друга. Механическое движение считается относительным - для его описания нужно указать, относительно какой точки оно рассматривается

Простыми видами движения материального тела являются равномерное и прямолинейное передвижения. Равномерным оно является, если модуль вектора скорости не изменяется (направление может меняться).

Движение называется прямолинейным, если курс вектора скорости постоянный (а величина при этом способно изменяться). Траекторией считается прямая линия, на которой находится вектор скорости.

Примеры механического движения мы видим в обыденной жизни. Это проезжающие мимо машины, летящие самолеты, плывущие корабли. Простые примеры мы формируем сами, проходя возле других людей. Каждую секунду наша планета проходит в двух плоскостях: вокруг Солнца и своей оси. И это тоже образцы механического движения.

Разновидности движения

Поступательное движение - автоматическое перемещение твердого тела, при этом любой этап прямой, четко связанный с движущейся точкой, остается синхронным своему изначальному положению.

Важной характеристикой движения тела считается её траектория, представляющая пространственную кривую, которую можно показать в виде сопряженных дуг разного радиуса, исходящего каждый из своего центра. Различного для любых точек тела положение, которого может изменяться с течением времени.

Поступательно двигается кабина лифта или кабинка колеса обозрения. Поступательное движение проходит в 3-х мерном пространстве, но его главная отличительная черта - сохранение параллельности всякого отрезка самому себе, остается в силе.

Период обозначаем буквой $T$. Чтобы найти период обращения, надо время вращения разделить на число оборотов: $\frac{\delta t}{N} = {T}$

Вращательное движение - материальная точка описывает круг. При вращательном процессе совершенно твёрдого тела все его точки описывают круг, которые находятся в параллельных плоскостях. Центры этих окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называются осью вращения.

Ось вращения может быть расположена внутри тела и за ним. Ось вращения в системе бывает подвижной и неподвижной. Например, в системе отсчёта, соединенной с Землей, ось вращения ротора генератора на станции недвижна.

Иногда ось вращения получает сложное вращательное движение - сферическое, когда точки тела двигаются по сферам. Точка передвигается вокруг неподвижной оси, не проходящей через центр тела или вращающуюся материальную точку, такое движение называется круговым.

Характеристики прямолинейного движения: перемещение, скорость, ускорение. Становятся их аналогами при вращательном движении: угловое перемещение, угловая скорость, угловое ускорение :

  • роль передвижения во вращательном процессе имеет угол;
  • величина угла поворота за единицу времени является угловой скоростью;
  • изменение угловой скорости в промежуток времени - это угловое ускорение.

Колебательное движение

Движение в двух противоположных направлениях, колебательное. Раскачивания, которые проходят в замкнутых концепциях называют независимыми или собственными колебаниями. Колыхания, которые происходят под действием внешних сил, называют вынужденными.

Если анализировать раскачивание согласно характеристик, которые изменяются (амплитуда, частота, период и др.), тогда их можно поделить на затухающие, гармонические, нарастающие (а также прямоугольные, сложные, пилообразные).

При свободных колебаниях в настоящих системах всегда происходят утраты энергии. Энергия тратится на работу по преодолению силы сопротивления воздуха. Сила трения уменьшает амплитуды колебаний, и они прекращаются через некоторое время.

Вынужденные раскачивания незатухающие. Поэтому надо пополнять потери энергии за каждый час колебаний. Для этого необходимо действовать на тело время от времени, изменяющейся силой. Вынужденные колыхания происходят с частотой, равной изменениям внешней силы.

Амплитуда принужденных колебаний достигает самого большого значения тогда, когда данный коэффициент такой же, как и частота колебательной системы. Это называется резонансом.

Например, если периодически дергать канат в такт его колебаниям, то мы увидим увеличение амплитуды его раскачивания.

Определение 3

Материальная точка – это тело, величиной которого в определенных условиях можно пренебрегать.

Часто вспоминаемый нами автомобиль возможно принимать за материальную точку сравнительно Земли. Но если люди перемещаются внутри этой машины, то уже нельзя пренебрегать размерами автомобиля.

Когда вы решаете задачи по физике, расценивают движение тела как движение материальной точки, и пользуются такими понятиями, как скорость точки, ускорение материального тела, инерция материальной точки и т.п.

Система отсчёта

Материальная точка перемещается сравнительно инерции иных тел. Тело, согласно отношению к какому рассматривается это автоматическое перемещение, именуется телом отсчёта. Тело отсчета выбирают свободно в зависимости с поставленными заданиями.

С телом отсчёта вяжется система местоположение, что предполагает из себя точку отсчёта (основание координат). Концепция местоположение обладает 1, 2 либо 3 оси в связи с условием перемещения. Состояние точки на линии (1 ось), плоскости (2 оси) либо в месте (3 оси) устанавливают в соответствии с этим одной, 2-мя либо 3-мя координатами.

С целью установления положения тела в пространственной области в любой период времени необходимо установить старт отсчета времени. Устройство для замера времени, система координат, точка отсчета, с которым соединена система координат - это и есть система отсчёта.

Относительно этой системы рассматривается передвижение тела. У одной и той же точки в сравнении с различными телами отсчёта в различных концепциях координат имеют все шансы быть совершенно другие координаты. Система отсчёта также зависит от выбора траектория движения

Разновидности систем отсчёта могут быть разнообразными, например: недвижимая система отсчёта, подвижная система отсчета, инерциальная система отсчета, неинерциальная система отсчёта.

Существует шесть основных видов остеокинетического (произвольного или активного) движения, которое может выполнить сегмент тела (рис. 2.2).

Сгибание представляет собой движение, при котором уменьшается угол между костями, образующими сустав. Примерами этого вида движения является сгибание локтевого сустава, наклон (сгибание) головы вперед во время молитвы, сгибание ноги в коленном суставе (рис. 2.2, а).

Разгибание представляет собой увеличение угла между костями, образующими сустав, при этом происходит распрямление его кинематической цепи. Когда разгибание превышает анатомическое положение, говорят о гиперразгибании (рис. 2.2, б).

Отведение - движение сегмента тела от средней линии тела или от той части тела, к которой он прикреплен. Примерами отведения являются движения рук или ног в стороны (рис. 2.2, в).


Наука о гибкости

Рис. 2.2. Примеры шести основных видов движений:

а - сгибание коленного сустава; б - гиперразгибание тазобедренного сустава; в - отведение рук и ног; г - приведение рук и ног; д - вращение головой и верхней частью туловища;

е - циркумдукция рук (Alter, 1988)

Приведение - это движение, противоположное отведению. Это движение сегмента тела к средней линии тела или к той части тела, к которой он прикреплен. Примером является приведение рук к туловищу (рис. 2.2, г).

Вращение - движение сегмента тела вокруг своей оси. Примером такого движения являются повороты головы из стороны в сторону (рис. 2.2, д).

Циркумдукция представляет собой движение, при котором конец сегмента описывает круг. Циркумдукция нередко является сочетанием сгибания, приведения, разгибания и отведения. Примером являются круговые движения руками (рис. 2.2, е).

Специальные движения. Существует ряд терминов, которые используют для описания определенных специальных видов движений.


Г л а в а 2 . Остеачогия и артрология

Супинация - это направленное наружу вращение предплечья. Таким образом, это движение связано с поворотом ладони вперед (из положения стоя руки по бокам).

Пронация - это направленное вовнутрь вращение предплечья. Это движение используется при повороте дверной ручки или отвертки.

Инверсия - поворот подошвы стопы вовнутрь. Это движение нередко имеет место при растяжении голеностопного сустава.

Эверсия - вращение подошвы стопы наружу.

Существуют и другие виды движений, происходящие в голеностопном и подошвенном суставах: тыльное сгибание, или разгибание стопы назад («взять носки на себя»); сгибание подошвы (носки оттянуть), или подошвенное сгибание.

Два последних вида специальных движений - протракция и ретракция плечевого пояса. В первом случае выполняется направленное вперед движение плеча, лопатки и ключицы. Это движение наблюдается во время выполнения фазы подъема при выжимании в упоре. Ретракция представляет собой направленное назад движение плеча, лопатки и ключицы. Примеры ретракции можно найти в гребле и в стрельбе из лука (оттягивание тетивы).

Лекция 2

1.2.1. Равномерное, прямолинейное

Движение называется равномерным и прямолинейным, если точка движется по прямой линии с постоянной скоростью .

Рассмотрим движение материальной точки с постоянной скоростью вдоль оси OX (рис. 1.8). Пусть в начальный момент времени t=0 координата точки х = х 0 , а скорость совпадает с направлением движения.

Найдем координату х и путь s, пройденный точкой за интервал времени t.

За малый интервал dt перемещение точки

где – проекция вектора скорости на ось ОХ.

Проинтегрируем левую и правую часть последнего равенства в пределах изменения переменных x и t

В случае когда вектор скорости не совпадает с направлением движения

При прямолинейном равномерном движении пройденный точкой путь

1.2.2 Равнопеременное прямолинейное

Движение называется равнопеременным и прямолинейным, если тело перемещается по прямой линии с постоянным ускорением . Равнопеременное прямолинейное движение может быть равноускоренным, когда вектор ускорения совпадает с вектором мгновенной скорости и равнозамедленным, когда ему противоположен (рис. 1.9).

Пусть в начальный момент времени координата точки x=х 0 , скорость совпадает с направлением оси ОХ, тогда

при равноускоренном движении ,равнозамедленном .

За время t пройденный точкой путь.

где – модуль проекции вектора скорости на ось OX находится из соотношения интегрированием его левой и правой части в пределах изменения переменных и t

При подстановки в соотношение (1.19) скорости для равноускоренного движения пройденный путь

координата точки

Для равнозамедленного движения проекция скорости и координата точки определяются по формулам

Путь пройденной точкой

1.2.3 Равнопеременное

Движение называется равнопеременным, если тело перемещается по тра­ек­то­рии с постоянным вектором ускорения.

Примером равнопеременного криволинейного движения является движение тела брошенного со скоростью под углом к горизонту (рис. 1.10) Движение тела происходит в гравитационном поле Земли с постоянным ускорением свободного падения . Для определения положения тела в пространстве разложим его движение на равномерное прямолинейное по оси OX со скоростью и равнопеременное по оси OY с ускорением свободного падения g и начальной скоростью .

В момент времени t координаты тела

вектор скорости

Модуль вектора скорости



Уравнение траектории найдём путем исключения параметра t из равенств (1.25)

Ускорение свободного падения в любой точке траектории можно разложить на его касательную и нормальную составляющие, где модуль касательного ускорения

где α-угол между векторами скорости и ускорения g в заданной точке траектории

Модуль нормального ускорения

Из сравнения уравнения параболы и равенства (1.28) следует, что тело, брошенное под углом к горизонту, движется по параболе.

Задания для самоконтроля знаний.

1. Определить путь пройденный автомобилем за 2 часа его движения со скоростью 90 км/ч.

2. Определить время обгона легковым автомобилем грузовика, если водитель совершает этот маневр при начальной скорости 80 км/ч с ускорением 2 м/с 2 .

3. Определить тормозной путь поезда движущегося со скоростью 36 км/ч при времени торможения 1 минуты.

4. Определить максимальную высоту подъема снаряда имеющего начальную скорость 100м/с и выкатившего из орудия под углом 45° к горизонту.

Лекция 3

1.2.4 Равномерное, вращательное

Рассмотрим движение м.т. по окружности радиусом R с постоянной линейной скоростью вокруг неподвижной оси Z (рис. 1.11).

Положение точки определяет радиус-вектор . За малый интервал времени радиус-вектор повернется на угол . Направление поворота м.т. вокруг оси Z задается вектором и правилом правого винта: поступательное движение правого винта и вектора совпадают, если вращение точки и винта совершается в одинаковом направлении. Модуль вектора равен углу поворота за интервал времени . Линейное перемещение вектора за время dt

где – угол между вектором и вектором .

Вектор линейной скорости движения точки

где – вектор угловой скорости.

Вектор угловой скорости совпадает с направлением вектора ).

Модуль вектора линейной скорости

Вектор линейного ускорения

где – вектор углового ускорения, – вектор касательного ускорения, – вектор нормального ускорения.

Направление вектора углового ускорения совпадает с направлением вектора (), если угловая скорость возрастает, и противоположно () , если она уменьшается.

Модули векторов ,

Угловой путь м.т., движущейся по окружности за время dt

Угловой путь точки за интервал времени t при начальном угле

При постоянной угловой скорости , угловой путь и угол поворота определяется из равенств:

При равноускоренном вращении точки для t=0, , угловая скорость определяется из соотношения

Для равноускоренного вращения за время t угловой путь и угол поворота определяются из соотношений

Для равнозамедленного вращения

Согласно определению угловая скорость измеряется в рад/с, угловое ускорение – рад/с 2 .

1.2.5 Колебательное движение

Колебания - это любой физический процесс, характери­зующийся повторяемостью во времени.

В процессе колебаний значения физических величин, определяющих состояние системы, через равные или неравные промежутки времени повторяются.

Колебания называются периодическими , если движение тела повторяется через равные промежутки времени.

Наименьший промежуток времени Т, через который значение изменяющейся физической величины повторяется (по величине и направлению, если эта величина векторная, по величине и знаку, если она скалярная), называется периодом колебаний этой величины.

Число полных колебаний, совершаемых колеблющейся величиной за единицу времени, называется частотой колебаний и обозначается ν. Период и частота колебаний связаны соотношениями .

Простейшим из периодических колебаний являются гармонические колебания.

Гармонические колебания - это колебания, в которых координаты тел изменяются с течением времени по закону синуса или косинуса.

Примером гармонического колебательного движения является изменение координат материальной точки, движущейся по окружности радиусом R (рис. 1.12).

Сложим в системе уравнений левые и правые части и после преобразований получим формулы для вычислений А и φ 0 .

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

Виды движений:

А) Равномерное прямолинейное движение материальной точки: Начальные условия


. Начальные условия



Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

О писания движения . Существуют различные способы описания движения тел. При координатном способе задания положения тела в декартовой системе координат движение материальной точки определяется тремя функциями, выражающими зависимость координат от времени:

x = x (t ), y =у(t ) и z = z (t ) .

Эта зависимость координат от времени называется законом движения (или уравнением движения).

При векторном способе положение точки в пространстве определяется в любой момент времени радиус-вектором r = r (t ) , проведенным из начала координат до точки.

Существует еще один способ определения положения материальной точки в пространстве при заданной траектории ее движения: с помощью криволинейной координаты l (t ) .

Все три способа описания движения материальной точки эквивалентны, выбор любого из них определяется соображениями простоты получаемых уравнений движения и наглядности описания.

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

Линия, по которой движется некоторая точка тела, называется траекторией движения этой точки.

Длина участка траектории, пройденного точкой при ее движении, называется пройденным путем .

Изменение радиус- вектора с течением времени называют кинематическим законом :
При этом координаты точек будут являться координатами по времени:x = x (t ), y = y (t ) и z = z (t ).

При криволинейном движении путь больше модуля перемещения, так как длина дуги всегда больше длины стягивающей её хорды

Вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиус-вектора точки за рассматриваемый промежуток времени), называется перемещением . Результирующее перемещение равно векторной сумме последовательных перемещений.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории, и модуль перемещения равен пройденному пути.

3. Скорость. Средняя скорость. Проекции скорости.

Скорость - быстрота изменения координаты. При движении тела (материальной точки) нас интересует не только его положение в выбранной системе отсчета, но и закон движения, т. е. зависимость радиус-вектора от времени. Пусть моменту времени соответствует радиус-вектордвижущейся точки, а близкому моменту времени- радиус-вектор. Тогда за малый промежуток времени
точка совершит малое перемещение, равное

Для характеристики движения тела вводится понятие средней скорости его движения:
Эта величина является векторной, совпадающей по направлению с вектором
. При неограниченном уменьшенииΔt средняя скорость стремится к предельному значению, которое называется мгновенной ско­ростью :

Проекции скорости.

А) Равномерное прямолинейное движение материальной точки:
Начальные условия

Б) Равноускоренное прямолинейное движение материальной точки:
. Начальные условия

В) Движение тела по дуге окружности с постоянной по модулю скоростью:

Характеристики механического движения. Виды движения.

Механическое движение тел изучается в разделе физики, который называется механикой . Основная задача механики – определить положение тела в любой момент времени .

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

Раздел механики кинематика отвечает на вопрос: «как движется тело?»

Азбука кинематики необходима нам для того, чтобы мы могли:

Выбирать систему отсчета для изучения движения тела;

Упрощать задачи, мысленно заменяя тело материальной точкой;

Определять траекторию движения, находить путь;

Различать виды движений.

Чтобы описывать движение, нужно иметь систему отсчета:

- тело отсчета;

- связанную с телом отсчета систему координат;

- прибор для измерения времени (часы).

Основная задача механики – определить положение тела в любой момент времени.

Тело, размерами которого в данной задаче можно пренебречь, называют материальной точкой.

Характеристики механического движения:

1.Траектория

3.Перемещение

4.Скорость

5.Ускорение

Линия, по которой движется тело (или материальная точка), называется траекторией движения тела.

Путь , – это длина участка траектории . Путь – скалярная величина.

Перемещением тела (материальной точки) называют вектор, проведённый из начального положения тела в его положение в данный момент времени. Длину направленного отрезка S называют модулем перемещения. Перемещение есть векторная величина.

Скорость равномерного прямолинейного движения – это физическая величина, равная отношению перемещения тела ко времени, за которое оно совершено.

Ускорением тела называют векторная физическую векторную величину, равную отношению изменения скорости тела ко времени, за которое это изменение произошло.

Проекция вектора на координатную ось

Виды движения

механическое движение

1. Прямолинейное 5. По окружности

2.Равномерное 3. Неравномерное равномерное

4. Равноускоренное

2. Равномерным механического движения является движение тела вдоль прямой линии с постоянной по модулю и направлению скоростью . При равномерном движении тело за любые равные промежутки времени проходит равные пути .

3. Неравномерным называется движение , при котором тело за равные промежутки времени проходит неравные пути.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории

4.Равноускоренным называется движение, при котором за любые равные промежутки времени скорость тела увеличивается на одинаковую величину. При равноускоренном движении ускорение тела постоянно.

Четыре возможных случая направленности начальной скорости и ускорения

Графики движения

Прям. Равн. Движ. Прям. Равноуск. Движ.