Стронций. Стронций и Цезий — радионуклиды в продуктах питания Стронций 90 иттрий 90

Среди искусственных изотопов Стронций его долгоживущий радионуклид 90Sr - один из важных компонентов радиоактивного загрязнения биосферы. Попадая в окружающую среду, 90Sr характеризуется способностью включаться (главным образом вместе с Ca) в процессы обмена веществ у растений, животных и человека. Поэтому при оценке загрязнения биосферы 90Sr принято рассчитывать отношение 90Sr/Ca в стронциевых единицах (1 с. е. = 1 мк мккюри 90Sr на 1 г Ca). При передвижении 90Sr и Ca по биологическим и пищевым цепям происходит дискриминация Стронций, для количественного выражения которой находят «коэффициент дискриминации», отношение 90Sr/Ca в последующем звене биологической или пищевой цепи к этой же величине в предыдущем звене. В конечном звене пищевой цепи концентрация 90Sr, как правило, значительно меньше, чем в начальном.

В растения 90Sr может поступать непосредственно при прямом загрязнении листьев или из почвы через корни (при этом большое влияние имеет тип почвы, сё влажность, pH, содержание Ca и органических веществ и т.д.). Относительно больше накапливают 90Sr бобовые растения, корне- и клубнеплоды, меньше - злаки, в том числе зерновые, и лён. В семенах и плодах накапливается значительно меньше 90Sr, чем в др. органах (например, в листьях и стеблях пшеницы 90Sr в 10 раз больше, чем в зерне). У животных (поступает в основном с растительной пищей) и человека (поступает в основном с коровьим молоком и рыбой) 90Sr накапливается главным образом в костях. Величина отложения 90Sr в организме животных и человека зависит от возраста особи, количества поступающего радионуклида, интенсивности роста новой костной ткани и др. Большую опасность 90Sr представляет для детей, в организм которых он поступает с молоком и накапливается в быстро растущей костной ткани.

Биологическое действие 90Sr связано с характером его распределения в организме (накопление в скелете) и зависит от дозы b-облучения, создаваемого им и его дочерним радиоизотопом 90Y. При длительном поступлении 90Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Существенные изменения в костной ткани наблюдаются при содержании 90Sr в рационе около 1 мккюри на 1 г Ca. Заключение в 1963 в Москве Договора о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой привело к почти полному освобождению атмосферы от 90Sr и уменьшению его подвижных форм в почве .

Основным источником загрязнения природы радиоактивным стронцием были испытания ядерного оружия и аварии на атомных электростанциях

Поэтому из радиоактивных изотопов стронция наибольший практический интерес представляют нуклиды с массовыми числами 89 и 90, выход которых, в большом количестве наблюдается в реакциях деления урана и плутония.

Выпавший на поверхность Земли радиоактивный стронций попадает в почву. Из почвы радионуклиды через корневую систему поступают в растения. Следует заметить, что на этом этапе большую роль играют свойства почвы и вид растения.

Выпадающие на поверхность почвы радионуклиды на протяжении многих лет могут оставаться в её верхних слоях. И ТОЛЬКО если почва бедна такими минералами как кальций, калий, натрий, фосфор создаются благоприятные условия для миграции радионуклидов в самой почве и по цепи почва – растение. В первую очередь это относится к дерново-подзолистым и песчано-суглинистым почвам. В чернозёмных почвах подвижность радионуклидов крайне затруднена. Теперь о растениях. В наибольших количествах стронций накапливается в бобовых, корнеплодах, и в меньшей мере (в 3-7 раз) в злаковых.

Говоря о радионуклидах в продуктах питания, мы прежде всего подразумеваем опасные Стронций-90 и Цезий-137. Именно они в больших количествах попадают в окружающую среду во время аварий на атомных станциях и ядерных взрывов. А учитывая их сравнительно большой период полураспада (около 30 лет) они рано или поздно могут попасть в наш обед.

Из атомного реактора - в тарелку с фруктами

Организм человека имеет замечательное свойство - он умеет распознавать «своих» и «чужих». К примеру, порция желе - переварится и почти полностью усвоится, а случайно проглоченная жвачка - нет. Проблема радионуклидов в том, что наш организм воспринимает их как необходимые ему микроэлементы. Они усваиваются и участвуют в обмене веществ. Аналогично усваиваются радионуклиды и сельскохозяйственными растениями и животными. Таким образом, с мясом, молоком и фруктами они попадают на наш стол.

Стронций-90 - вред для человека

Вред стронция для человека прежде всего в том, что наш организм ошибочно принимает его за кальций. Попадая в организм, радионуклид занимает место необходимого нам кальция в костях, нарушая их структуру. Опасность этого легко представить: вообразите дом, сложенный из одинаковых стандартных кирпичей. А теперь представьте себе, что часть из них заменена газобетонными блоками, вдвое превышающими размер кирпича.

Костная ткань, в которой кальций заменился стронцием, подвержена переломам, но это не единственная опасность. Со стопроцентной вероятностью со встроившимся в кости стронцием случится радиоактивный распад. Это означает, что он превратится в атом другого элемента, при этом испустив бета-частицу - то, что мы называем «радиацией», «излучением» и т. п. На своем пути она, как выпущенная с большой скоростью пуля, может повреждать структуры клетки и - что самое опасное - ДНК, «основной закон» нашего организма. От таких повреждений информация, записанная в ней может исказиться, и такая клетка может дать начало злокачественной опухоли. Учитывая то, что стронций в организме человека предпочитает находиться в костях, больше всего страдает от таких радио-повреждений костный мозг.

Если стронций уже попал в организм, вывести его очень сложно, ведь костная ткань не обновляется ежеминутно. Именно поэтому главное в профилактике всех радиоактивных проблем - это осторожный подбор продуктов питания.

Цезий-137 - вред для человека

Радиоактивный цезий является двойником калия, поэтому попав в организм, подменяет его во всех процессах. Это в первую очередь касается мышц - именно здесь накапливается большая часть поглощенного цезия. Вред цезия-137 для человека в первую очередь связан с его радиоактивностью. На пути своих радиоактивных превращений он будет облучать окружающие ткани гамма- и бета-лучами, вызывая мутации и повреждения на клеточном уровне.

Хорошая новость - цезий, в отличии от стронция, выводится из организма человека со временем. В этом основная заслуга принадлежит почкам. Именно поэтому рекомендовано принимать мочегонные средства в случаях, когда в организм попала порция радиоактивного цезия - после аварий и т.п.

Постоянное влияние цезия-137 на человека в долгосрочной перспективе может вызвать появление злокачественных опухолей. Поглощение больших доз (при авариях и взрывах) вызывает лучевую болезнь, но это проблема скорее радиационной, а не пищевой безопасности.

Никогда не приобретайте ягоды, грибы, овощи и молокопродукты, если происхождение их неизвестно. Относитесь осторожно к продуктам, происходящим из:
— областей, загрязненных вследствие аварии на АЭС - например, Брянской;
— Южного Урала;
— Барнаула и Новосибирска.

Накапливать радионуклиды может и речная рыба. В случае минимальных сомнений - требуйте у продавца документы, подтверждающие качество товара. Радиоактивность - один из показателей, который обязательно проверяется у пищевых продуктов.

Стронций -90 - чистый бета-излучатель с периодом полураспада 29.12 лет. 90Sr - чистый бета-излучатель с максимальной энергией 0,54 эВ. При распаде он образует дочерний радионуклид 90Y с периодом полураспада 64 ч. Как и 137Сs, 90Sr может находиться в растворимой и нерастворимой в воде формах. Особенности поведения этого радионуклида в организме человека. Практически весь попавший в организм стронция-9О центрируется в костной ткани. Объясняется это тем, что стронций - химический аналог кальция, а соединения кальция - основной минеральный компонент кости. У детей минеральный обмен в костных тканях интенсивней, чем у взрослых, поэтому в их скелете стронций-90 накапливается в большем количестве, но и выводится быстрее .

Для человека период его полувыведения стронция-90 - 90-154 суток . От депонированного в костной ткани стронция-90 страдает, в первую очередь, красный костный мозг - основная кроветворная ткань, которая к тому же очень радиочувствительная. От стронция-90 накопленного в тазовых костях, облучаются генеративные ткани. Поэтому для этого радионуклида установлены низкие ПДК - примерно в 100 раз ниже, чем для цезия-1З7.

В организм стронций-90 поступает только с пищей, причем в кишечнике всасывается до 20% от его поступления. Наибольшее содержание этого радионуклида в костной ткани жителей северного полушария было фиксировано в 1963-1965 гг. Тогда этот скачок был вызван глобальными выпадениями радиоактивных осадков от интенсивных испытаний ядерного оружия в атмосфере в 1961-1962 гг.

После аварии на чернобыльской АЭС вся территория со значительным загрязнением стронцием-90 оказалась в пределах 30- километровой зоны. Большое количество стронция-90 попало в водоемы, но в речной воде его концентрация нигде не превышала предельно допустимой для питьевой воды (кроме реки Припять в начале мая 1986 г. в ее нижнем течении).

Биологический период полувыведения для стронция-90 из мягких тканей – 5-8 суток, для костей – до 150 суток (16% выводится с Тэфф равным 3360 суток).

Отдал. Последствия - признаки извращения и замедленной перестройки кости, а также резкое сокращение ее кровеносной сети.

55.Цезий-137 период полурасспада,поступление в организм.

Цезий-137 - бета-излучатель с периодом полураспада 30.174 года. 137Сs открыт в 1860 г. немецкими учеными Кирхгофом и Бунзеном. Название получил от латинского слова caesius - голубой, по характерной яркой линии в синей области спектра. В настоящее время известно несколько изотопов цезия. Наибольшее практическое значение имеет 137Сs, один из наиболее долгоживущих продуктов деления урана.

Ядерная энергетика является источником поступления 137Сs в окружающую среду. Согласно опубликованным данным в 2000 году реакторами АЭС всех стран мира в атмосферу было выброшено около 22,2 х 1019 Бк 137Сs. Выброс 137Сs осуществляется не только в атмосферу, но и в океаны с атомных подводных лодок, танкеров, ледоколов, оснащенных ядерно-энергетическими установками. По своим химическим свойствам цезий близок к рубидию и калию - элементам 1 группы. Изотопы цезия при любом пути поступления в организм хорошо всасываются .

После аварии на ЧАЭС во внешнюю среду поступило 1.0 МКи цезия-137. В настоящее время это основной дозообразующий радионуклид на территориях, пострадавших от аварии на Чернобыльской АЭС. От его содержания и поведения во внешней среде зависит пригодность загрязненных территорий для полноценной жизни.

Почвы Украинско-Белорусского Полесья имеют специфическую особенность - цезий-137 плохо фиксируется ими и, как следствие, он легко поступает в растения через корневую систему.

Изотопы цезия, являясь продуктами деления урана, включаются в биологический круговорот и свободно мигрируют по различным биологическим цепочкам. В настоящее время 137Сs обнаруживается в организме различных животных и человека. Следует отметить, что стабильный цезий входит в состав организма человека и животных в количествах от 0,002 до 0,6 мкг на 1 г мягкой ткани.

Всасывание 137Сs в ЖКТ животных и человека составляет 100% . В отдельных участках ЖКТ всасывание 137Сs происходит с различной скоростью. Через дыхательные пути в организм человека поступление 137Сs составляет 0,25% величины, поступающей с пищевым рационом. После перорального поступления цезия значительные количества всосавшегося радионуклида секретируются в кишечник, затем реабсорбируются в нисходящих отделах кишечника. Степень реабсорбции цезия может существенно различаться у разных видов животных. Поступив в кровь, он сравнительно равномерно распределяется по органам и тканям. Путь поступления и вид животного не влияют на характер распределения изотопа.

Определение 137Сs в организме человека проводят по измерению гамма-излучения от тела и бета-, гамма-излучению от выделений (моча, кал). Для этой цели используют бета-гамма-радиометры и счетчик излучений человека (СИЧ). По отдельным пикам спектра, соответствующим различным гамма-излучателям, можно определить их активность в организме. С целью профилактики радиационных поражений 137Сs все работы с жидкими и твердыми соединениями рекомендуется проводить в герметичных боксах. Для предупреждения попадания цезия и его соединений внутрь организма необходимо использовать средства индивидуальной защиты и соблюдать правила личной гигиены.

Эффективный период полувыведения долгоживущих изотопов определяется в основном биологическим периодом полувыведения, короткоживущих – периодом полураспада. Биологический период полувыведения разнообразен – от нескольких часов (криптон, ксенон, радон) до нескольких лет (скандий, иттрий, цирконий, актиний). Эффективный период полувыведения колеблется от нескольких часов (натрий-24,медь-64), суток (йод-131, фосфор-23, сера-35), до десятков лет (радий-226, стронций-90).

Биологический период полувыведения для цезия-137 из организма равен 70 суткам, из мышц, легких и скелета – 140 суток.


Источники герметизируются с помощью клея. Состоят из подложки с нанесенным на нее препаратом с радионуклидами стронций-90+иттрий-90, помещенной между корпусом и крышкой источника.

Область применения:
Радиоизотопные приборы

Примечание:
Источники по классам прочности соответствуют С 34444 по ГОСТ 25926 (ISO 2919). Назначенный срок службы - 3,5 года с даты выпуска. Контроль герметичности производится в соответствии с ГОСТ Р 51919-2002 (ИСО 9978:1992(Е)) иммерсионным методом, предел прохождения - 200 Бк (~5 нКи). Источники поставляются комплектами, состоящими из одного источника БИС-Р и одного источника БИС-К или девяти источников БИС-6А и одного источника БИС-Ф. По заказу допускается поставка отдельных источников, входящих в комплект.

Основные технические характеристики:
Представляют собой подложку толщиной 1,1 max мм, на рабочую поверхность которой (углубление) нанесен слой радиоактивного препарата, защищенный пленкой окиси металла. Назначенный срок службы - 10 лет с даты выпуска.

Область применения:
Для поверки и градуировки радиометрической аппаратуры в качестве мер активности радионуклидов.

Примечание:
Источники по классам прочности соответствуют С 24324 по ГОСТ 25926 (ISO 2919). Контроль герметичности производится в соответствии с ГОСТ Р 51919-2002 (ИСО 9978:1992(Е)) методом сухого мазка с нерабочей поверхности, предел прохождения - 2 Бк (~0,05 нКи). Источники поставляются поштучно, наборами и комплектами.

* Измеренные значения активности радионуклидов не отличаются от номинальных более чем на 30%.

Природный стронций состоит из четырех стабильных изотопов 88 Sr (82,56%), 86 Sr (9,86%), 87 Sr (7,02%) и 84 Sr (0,56%). Распространенность изотопов стронция варьируетcя в связи с образованием 87 Sr за счет распада природного 87 Rb. По этой причине точный изотопный состав стронция в породе или минерале, которые содержат рубидий, зависит от возраста и отношения Rb/Sr в данной породе или минерале.

Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в том числе 90 Sr (Т 1/2 = 29,12 года), образующийся при делении урана. Степень окисления +2, очень редко +1.

История открытия элемента.

Свое название стронций получил от минерала стронцианита, найденного в 1787 в свинцовом руднике около Стронциана (Шотландия). В 1790 английским химиком Адером Кроуфордом (Crawford Ader) (1748–1795) было показано, что стронцианит содержит новую, еще неизвестную «землю». Эту особенность стронцианита установил также и немецкий химик Мартин Генрих Клапрот (Klaproth Martin Heinrich) (1743–1817). Английский химик Т.Хоп (Hope T.) в 1791 доказал, что в стронцианите содержится новый элемент. Он четко разграничил соединения бария, стронция и кальция, используя, помимо других методов, характерную окраску пламени: желто-зеленую для бария, ярко-красную для стронция и оранжево-красную для кальция.

Независимо от западных ученых, петербургский академик Тобиаш (Товий Егорович) Ловиц (1757–1804) в 1792, исследуя минерал барит, пришел к заключению, что в нем, помимо оксида бария, в качестве примеси находится и «стронцианова земля». Он сумел извлечь из тяжелого шпата более 100 г новой «земли» и исследовал ее свойства. Результаты этой работы были опубликованы в 1795. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление... Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей... Мне оставалось только проверить... замечательное свойство стронциановой земли – окрашивать спиртовое пламя в карминово-красный цвет, и, действительно, моя соль... обладала в полной мере этим свойством».

В свободном виде стронций первым выделил английский химик и физик Гемфри Дэви в 1808. Металлический стронций был получен при электролизе его увлажненного гидроксида. Выделявшийся на катоде стронций соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Распространенность стронция в природе и его промышленное получение. Содержание стронция в земной коре составляет 0,0384%. Он является пятнадцатым по распространенности и следует сразу за барием, немного уступая фтору. В свободном виде стронций не встречается. Он образует около 40 минералов. Наиболее важный из них – целестин SrSO 4 . Добывают также стронцианит SrCO 3 . Стронций присутствует в качестве изоморфной примеси в различных магниевых, кальциевых и бариевых минералах.

Стронций содержится и в природных водах. В морской воде его концентрация составляет 0,1 мг/л. Это означает, что в водах Мирового океана содержатся миллиарды тонн стронция. Минеральные воды, содержащие стронций, считают перспективным сырьем для выделения этого элемента. В океане часть стронция концентрируется в железомарганцевых конкрециях (4900 т в год). Стронций накапливается также простейшими морскими организмами – радиоляриями, скелет которых построен из SrSO 4 .

Доскональная оценка мировых промышленных ресурсов стронция не проводилась, но полагают, что они превышают 1 млрд. т.

Наиболее крупные залежи целестина – в Мексике, Испании и Турции. В России подобные месторождения есть в Хакассии, Пермской и Тульской области. Однако потребности в стронции в нашей стране удовлетворяются, в основном, за счет импорта, а также переработки апатитового концентрата, где карбонат стронция составляет 2,4%. Специалисты считают, что добыча стронция в недавно открытом Кишертском месторождении (Пермская область) может повлиять на ситуацию на мировом рынке этого продукта. Цена на пермский стронций может оказаться примерно в 1,5 раза ниже, чем на американский, стоимость которого сейчас составляет около 1200 долл. за тонну.

Характеристика простого вещества и промышленное получение металлического стронция.

Металлический стронций имеет серебристо-белую окраску. В неочищенном состоянии он окрашен в бледно-желтый цвет. Это сравнительно мягкий металл, легко режется ножом. При комнатной температуре стронций имеет кубическую гранецентрированную решетку (a -Sr); при температуре выше 231° С превращается в гексагональную модификацию (b -Sr); при 623° С переходит в кубическую объёмноцентрированную модификацию (g -Sr). Стронций относится к легким металлам, плотность его a -формы 2,63г/см3 (20° С). Температура плавления стронция равна 768° С, температура кипения составляет 1390° С.

Являясь щелочноземельным металлом, стронций активно реагирует с неметаллами. При комнатной температуре металлический стронций покрывается пленкой из оксида и пероксида. При нагревании на воздухе воспламеняется. Стронций легко образует нитрид, гидрид и карбид. При повышенных температурах стронций реагирует с диоксидом углерода:

5Sr + 2CO 2 = SrC 2 + 4SrO

Металлический стронций взаимодействует с водой и кислотами, выделяя из них водород:

Sr + 2H 3 O + = Sr 2+ + H 2 ­ + 2H 2 O

Реакция не идет в тех случаях, когда образуются малорастворимые соли.

Стронций растворяется в жидком аммиаке с образованием темно-синих растворов, из которых при выпаривании можно получить блестящий аммиакат медного цвета Sr(NH 3) 6 , постепенно разлагающийся до амида Sr(NH 2) 2 .

Для получения металлического стронция из природного сырья целестиновый концентрат сначала восстанавливают при нагревании углем до сульфида стронция. Затем сульфид стронция обрабатывают соляной кислотой, а полученный хлорид стронция обезвоживают. Стронцианитовый концентрат разлагают обжигом при 1200° С, а затем растворяют образовавшийся оксид стронция в воде или кислотах. Нередко стронцианит сразу растворяют в азотной или соляной кислоте.

Металлический стронций получают электролизом смеси расплавленных хлорида стронция (85%) и хлорида калия или аммония (15%) на никелевом или железном катоде при 800° С. Полученный этим методом стронций обычно содержит 0,3–0,4% калия.

Используют также высокотемпературное восстановление оксида стронция алюминием:

4SrO + 2Al = 3Sr + SrO·Al 2 O 3

Для металлотермического восстановления оксида стронция применяют также кремний или ферросилиций. Процесс ведут при 1000° С в вакууме в стальной трубке. Хлорид стронция восстанавливают металлическим магнием в атмосфере водорода.

Крупнейшими производителями стронция являются Мексика, Испания, Турция и Великобритания.

Несмотря на довольно большое содержание в земной коре, широкого применения металлический стронций еще не нашел. Как и другие щелочноземельные металлы, он способен очищать черный металл от вредных газов и примесей. Это свойство дает стронцию перспективу применения в металлургии. Кроме того, стронций является легирующей добавкой к сплавам магния, алюминия, свинца, никеля и меди.

Металлический стронций поглощает многие газы и поэтому используется в качестве геттера в электровакуумной технике.

Соединения стронция.

Преобладающая степень окисления (+2) для стронция обусловлена, в первую очередь, его электронной конфигурацией. Он образует многочисленные бинарные соединения и соли. В воде хорошо растворимы хлорид, бромид, иодид, ацетат и некоторые другие соли стронция. Большинство солей стронция мало растворимы; среди них сульфат, фторид, карбонат, оксалат. Малорастворимые соли стронция легко получаются обменными реакциями в водном растворе.

Многие соединения стронция имеют необычное строение. Например, изолированные молекулы галогенидов стронция заметно изогнуты. Валентный угол составляет ~120° для SrF 2 и ~115° – для SrCl 2 . Это явление можно объяснить с помощью sd- (а не sp-) гибридизации.

Оксид стронция SrO получают прокаливанием карбоната или дегидратацией гидроксида при температуре красного каления. Энергия решетки и температура плавления этого соединения (2665° С) очень высоки.

При прокаливании оксида стронция в кислородной среде при высоком давлении образуется пероксид SrO 2 . Получен также желтый надпероксид Sr(O 2) 2 . При взаимодействии с водой оксид стронция образует гидроксид Sr(OH) 2 .

Оксид стронция – компонент оксидных катодов (эмиттеров электронов в электровакуумных приборах). Он входит в состав стекла кинескопов цветных телевизоров (поглощает рентгеновское излучение), высокотемпературных сверхпроводников, пиротехнических смесей. Его применяют как исходное вещество для получения металлического стронция.

В 1920 американец Хилл впервые применил матовую глазурь, в состав которой входили оксиды стронция, кальция и цинка, однако этот факт остался незамеченным, и новая глазурь не стала конкурентом традиционных свинцовых глазурей. Лишь в годы Второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. Это вызвало лавину исследований: в разных странах появились десятки рецептур стронциевых глазурей. Стронциевые глазури не только менее вредны по сравнению со свинцовыми, но и более доступны (карбонат стронция в 3,5 раза дешевле свинцового сурика). При этом им свойственны все положительные качества свинцовых глазурей. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе оксидов кремния и стронция готовят также эмали – непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка. Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» – разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280–1300° C, затем температуру снижают до 150–220° C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта, если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800–850° C – соли плавятся в трещинах и герметизируют их.

Гидроксид стронция Sr(OH)2 считают умеренно сильным основанием. Он не очень хорошо растворим в воде, поэтому его можно осадить при действии концентрированного раствора щелочи:

SrCl 2 + 2KOH(конц) = Sr(OH) 2 Ї + 2KCl

При обработке кристаллического гидроксида стронция пероксидом водорода образуется SrO 2 ·8H 2 O.

Гидроксид стронция может применяться для выделения сахара из патоки, однако обычно используют более дешевый гидроксид кальция.

Карбонат стронция SrCO 3 мало растворим в воде (2·10 –3 г в 100 г при 25° С). В присутствии избытка диоксида углерода в растворе он превращается в гидрокарбонат Sr(HCO 3) 2 .

При нагревании карбонат стронция разлагается на оксид стронция и диоксид углерода. Он взаимодействует с кислотами с выделением диоксида углерода и образованием соответствующих солей:

SrCO 2 + 3HNO 3 = Sr(NO 3) 2 + CO 2 ­ + H 2 O

Основные сферы карбоната стронция в современном мире – производство кинескопов для цветных телевизоров и компьютеров, керамических ферритовых магнитов, керамических глазурей, зубной пасты, антикоррозионных и фосфоресцирующих красок, высокотехнологичной керамики, в пиротехнике. Наиболее емкими направлениями потребления являются первые два. При этом спрос на карбонат стронция в производстве телевизионного стекла повышается с ростом популярности телеэкранов более крупных размеров. Возможно, развитие технологии производства плоских телеэкранов снизит спрос на карбонат стронция для телевизионных дисплеев, однако эксперты в промышленности считают, что в ближайшие 10 лет плоские телеэкраны не станут значительными конкурентами традиционных.

Европа потребляет львиную долю карбоната стронция для производства ферритовых стронциевых магнитов, которые используются в автомобильной промышленности, где они применяются для магнитных задвижек в дверцах автомобилей и тормозных системах. В США и Японии карбонат стронция используют преимущественно в производстве телевизионного стекла.

В течение многих лет крупнейшими в мире производителями карбоната стронция являлись Мексика и Германия, производственные мощности по выпуску этого товара в которых сейчас составляют соответственно 103 тыс. и 95 тыс. т в год. В Германии используют в качестве сырья импортный целестин, а мексиканские заводы работают на местном сырье. В последнее время годовые мощности по производству карбоната стронция расширились в Китае (примерно до 140 тыс. т). Китайский карбонат стронция активно продается в Азии и Европе.

Нитрат стронция Sr(NO 3) 2 хорошо растворим в воде (70,5 г в 100 г при 20° С). Его получают взаимодействием металлического стронция, оксида, гидроксида или карбоната стронция с азотной кислотой.

Нитрат стронция – компонент пиротехнических составов для сигнальных, осветительных и зажигательных ракет. Он окрашивает пламя в карминово-красный цвет. Хотя другие соединения стронция придают пламени такую же окраску, в пиротехнике предпочитают использовать именно нитрат: он не только окрашивает пламя, но одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород. При этом сначала образуется нитрит стронция, который затем превращается в оксиды стронция и азота.

В России соединения стронция широко использовались в пиротехнических составах. Во времена Петра Первого (1672–1725) их применяли для получения «потешных огней», устраивавшихся при проведении различных торжеств и празднеств. Академик А.Е.Ферсман назвал стронций «металлом красных огней».

Сульфат стронция SrSO 4 мало растворим в воде (0,0113 г в 100 г при 0° С). При нагревании выше 1580° С он разлагается. Его получат осаждением из растворов солей стронция сульфатом натрия.

Сульфат стронция используется как наполнитель при изготовлении красок и резины и утяжелитель в буровых растворах.

Хромат стронция SrCrO 4 осаждается в виде желтых кристаллов при смешивании растворов хромовой кислоты и гидроксида бария.

Дихромат стронция, образующийся при действии кислот на хромат, хорошо растворим в воде. Для перевода хромата стронция в дихромат достаточно такой слабой кислоты, как уксусная:

2SrCrO 4 + 2CH 3 COOH = 2Sr 2+ + Cr 2 O 7 2– + 2CH 3 COO – + H 2 O

Так его можно отделить от менее растворимого хромата бария, который удается превратить в дихромат только действием сильных кислот.

Хромат стронция обладает высокой светостойкостью, он очень устойчив к воздействию высоких температур (до 1000° С), обладает хорошими пассивирующими свойствами по отношению к стали, магнию и алюминию. Хромат стронция применяется как желтый пигмент в производстве лаков и художественных красок. Его называют «стронциановый желтый». Он входит в состав грунтовок на основе водорастворимых смол и особенно грунтовок на основе синтетических смол для легких металлов и сплавов (авиагрунтовок).

Титанат стронция SrTiO 3 не растворяется в воде, однако переходит в раствор под действием горячей концентрированной серной кислоты. Его получают спеканием оксидов стронция и титана при 1200–1300° С или соосажденных труднорастворимых соединений стронция и титана выше 1000° С. Титанат стронция применяют как сегнетоэлектрик, он входит в состав пьезокерамики. В технике сверхвысоких частот он служит в качестве материала для диэлектрических антенн, фазовращателей и других устройств. Пленки из титаната стронция используют при изготовлении нелинейных конденсаторов и датчиков инфракрасного излучения. С их помощью создают слоистые структуры диэлектрик – полупроводник – диэлектрик – металл, которые применяются в фотоприемниках, запоминающих устройствах и других приборах.

Гексаферрит стронция SrO·6Fe 2 O 3 получают спеканием смеси оксида железа (III) и оксида стронция. Это соединение используют в качестве магнитного материала.

Фторид стронция SrF 2 мало растворим в воде (чуть более 0,1 г в 1 л раствора при комнатной температуре). Он не взаимодействует с разбавленными кислотами, но переходит в раствор под действием горячей соляной кислоты. В криолитовых копях Гренландии найден минерал, содержащий фторид стронция – ярлит NaF·3SrF 2 ·3AlF 3 .

Фторид стронция используется в качестве оптического и ядерного материла, компонента специальных стекол и люминофоров.

Хлорид стронция SrCl 2 хорошо растворим в воде (34,6% по массе при 20° С). Из водных растворов ниже 60,34° С кристаллизуется гексагидрат SrCl 2 ·6H 2 O, расплывающийся на воздухе. При более высоких температурах он теряет сначала 4 молекулы воды, затем еще одну, а при 250° С полностью обезвоживается. В отличие от гексагидрата хлорида кальция гексагидрат хлорида стронция мало растворим в этаноле (3,64% по массе при 6° С), что используется для их разделения.

Хлорид стронция используется в пиротехнических составах. Его применяют также в холодильной технике, медицине, косметике.

Бромид стронция SrBr 2 гигроскопичен. В насыщенном водном растворе его массовая доля составляет 50,6% при 20° С. Ниже 88,62° С из водных растворов кристаллизуется гексагидрат SrBr 2 ·6H 2 O, выше этой температуры – моногидрат SrBr 3 ·H 2 O. Гидраты полностью обезвоживаются при 345° С.

Бромид стронция получают реакцией стронция с бромом или оксида (либо карбоната) стронция с бромоводородной кислотой. Он используется в качестве оптического материала.

Иодид стронция SrI 2 хорошо растворим в воде (64,0% по массе при 20° С), хуже – в этаноле (4,3% по массе при 39° С). Ниже 83,9° С из водных растворов кристаллизуется гексагидрат SrI 2 ·6H 2 O, выше этой температуры – дигидрат SrI 2 ·2H 2 O.

Иодид стронция служит в качестве люминесцентного материала в сцинтилляционных счетчиках.

Сульфид стронция SrS получают при нагревании стронция с серой или восстановлением сульфата стронция углем, водородом и другими восстановителями. Его бесцветные кристаллы разлагаются водой. Сульфид стронция применяется как компонент люминофоров, фосфоресцирующих составов, средств для удаления волос в кожевенной промышленности.

Карбоксилаты стронция можно получить при взаимодействии гидроксида стронция с соответствующими карбоновыми кислотами. Стронциевые соли жирных кислот («стронциевые мыла») используют для изготовления специальных консистентных смазок.

Стронциеорганические соединения . Чрезвычайно активные соединения состава SrR 2 (R = Me, Et, Ph, PhCH 2 и т.д.) могут быть получены при использовании HgR 2 (часто лишь при низкой температуре).

Бис(циклопентадиенил)стронций является продуктом прямой реакции металла с или с самим циклопентадиеном

Биологическая роль стронция.

Стронций – составная часть микроорганизмов, растений и животных. У морских радиолярий скелет состоит из сульфата стронция – целестина. Морские водоросли содержат 26–140 мг стронция на 100 г сухого вещества, наземные растения – около 2,6, морские животные – 2–50, наземные животные – около 1,4, бактерии – 0,27–30. Накопление стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения содержания стронция и других элементов, главным образом кальция и фосфора, в окружающей среде.

Животные получают стронций с водой и пищей. Некоторые вещества, например полисахариды водорослей, препятствует усвоению стронция. Стронций накапливается в костной ткани, в золе которой содержится около 0,02% стронция (в других тканях – около 0,0005%).

Соли и соединения стронция относятся к малотоксичным веществам, однако при избытке стронция поражаются костная ткань, печень и мозг. Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает «уровскую болезнь» у человека и животных (по названию реки Уров в Восточном Забайкалье) – поражение и деформацию суставов, задержку роста и другие нарушения.

Особенно опасны радиоактивные изотопы стронция.

В результате ядерных испытаний и аварий на АЭС в окружающую среду поступило большое количество радиоактивного стронция-90, период полураспада которого составляет 29,12 года. До тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от радиоактивного стронция росло из года в год.

В течение года после завершения атмосферных ядерных взрывов в результате самоочищения атмосферы большая часть радиоактивных продуктов, в том числе стронция-90, выпала из атмосферы на поверхность земли. Загрязнение природной среды за счет выведения из стратосферы радиоактивных продуктов ядерных взрывов, проводившихся на полигонах планеты в 1954–1980, сейчас играет второстепенную роль, вклад этого процесса в загрязнение атмосферного воздуха 90 Sr на два порядка меньше, чем от ветрового подъема пыли с почвы, загрязненной при ядерных испытаниях и в результате радиационных аварий.

Стронций-90, наряду с цезием-137, являются основными загрязняющими радионуклидами на территории России. На радиационную обстановку существенно влияет наличие загрязненных зон, появившихся вследствие аварий на Чернобыльской АЭС в 1986 и на ПО «Маяк» в Челябинской области в 1957 («Кыштымская авария»), а также в окрестностях некоторых предприятий ядерно-топливного цикла.

Сейчас время средние концентрации 90 Sr в воздухе за пределами территорий, загрязненных в результате Чернобыльской и Кыштымской аварий, вышли на уровни, наблюдавшиеся до аварии на Чернобыльской АЭС. В гидрологических системах, связанных с зонами, загрязненными при этих авариях, существенно сказывается смыв стронция-90 с поверхности почвы.

Попадая в почву, стронций вместе с растворимыми соединениями кальция поступает в растения. Больше других накапливают 90 Sr бобовые растения, корне- и клубнеплоды, меньше – злаки, в том числе зерновые, и лён. В семенах и плодах накапливается значительно меньше 90 Sr, чем в других органах (например, в листьях и стеблях пшеницы 90 Sr в 10 раз больше, чем в зерне).

Из растений стронций-90 может непосредственно или через животных перейти в организм человека. У мужчин стронций-90 накапливается в большей степени, чем у женщин. В первые месяцы жизни ребенка отложение стронция-90 на порядок выше, чем у взрослого человека, он поступает в организм с молоком и накапливается в быстро растущей костной ткани.

Радиоактивный стронций сосредотачивается в скелете и, таким образом, подвергает организм длительному радиоактивному воздействию. Биологическое действие 90 Sr связано с характером его распределения в организме и зависит от дозы b -облучения, создаваемого им и его дочерним радиоизотопом 90 Y. При длительном поступлении 90 Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет.

Применение стронция-90.

Радиоизотоп стронция применяется в производстве атомных электрических батарей. Принцип действия таких батарей основан на способности стронция-90 излучать электроны, обладающие большой энергией, преобразуемой затем в электрическую. Элементы из радиоактивного стронция, соединенные в миниатюрную батарейку (размером со спичечную коробку), способны безотказно служить без перезарядки 15–25 лет, такие батареи незаменимы для космических ракет и искусственных спутников Земли. А швейцарские часовщики с успехом используют крохотные стронциевые батарейки для питания электрочасов.

Отечественными учеными создан изотопный генератор электрической энергии для питания автоматических метеостанций на основе стронция-90. Гарантийный срок службы такого генератора – 10 лет, в течение которых он способен снабжать электрическим током нуждающиеся в нем приборы. Все обслуживание его заключается лишь в профилактических осмотрах – раз в два года. Первые образцы генератора установлены в Забайкалье и в верховьях таежной речки Кручины.

В Таллинне работает атомный маяк. Главная его особенность – радиоизотопные термоэлектрические генераторы, в которых в результате распада стронция-90 возникает тепловая энергия, преобразуемая затем в световую.

Устройства, в которых используется радиоактивный стронций, применяются для измерения толщины. Это необходимо для контроля и управления процессом производства бумаги, тканей, тонких металлических лент, пластмассовых пленок, лакокрасочных покрытий. Изотоп стронция используется в приборах для измерения плотности, вязкости и других характеристик вещества, в дефектоскопах, дозиметрах, сигнализаторах. На машиностроительных предприятиях часто можно встретить так называемые b -реле, они контролируют подачу заготовок на обработку, проверяют исправности инструмента, правильность положения детали.

При производстве материалов, являющихся изоляторами (бумага, ткани, искусственное волокно, пластмассы и т. д.), вследствие трения возникает статическое электричество. Чтобы избежать этого, пользуются ионизирующими стронциевыми источниками.

Елена Савинкина