Ветрогенератор из вентилятора. Самодельный для отопления небольшого дома или помещения

В этой статье я расскажу Вам, как сделать двигатель – генератор Бедини из кулера для компьютера. Эта модель устройства является одной из самых маломощных, но при этом она очень удобна в эксплуатации, дешева и проста в изготовлении. С моделью очень удобно проводить эксперименты. Она занимает крайне мало места и неприхотлива в обслуживании. Я поведаю Вам самый лучший, по моему мнению, способ её изготовления.

Вам понадобится: Транзистор 2N3055 TO-3 ; Диод 1 N 4001 и 1 N 4007 ; Резистор 47 Ом – 100 Ом (я рекомендую 51 Ом, 1Вт -2Вт ); Подстроечный резистор 1кОм (я рекомендую R-17N1-B1K, L15KC или 3296W-1-102LF потенциометр 1K(СП5-2ВБ )); кулер для компьютера (я брал JF0925S1H, вентилятор 12В, 92х92х25мм ), но какие на кулере будут наклейки в общем все равно; клемники, крокодильчики. Все это купить можно в радиомагазине, электрике, или вытащить из радиоприборов, я покупал в магазине «Вольтмастер» . Мне очень понравился магазин, цены у них на порядок меньше, чем в других. Еще нужна неоновая лампочка NE – 2. Ее вытащите из стартера для люминесцентной лампы, радиатор (можно взять кусок алюминия, можно вытащить из какой-либо ненужной радиоаппаратуры), кусочек фанеры или органического стекла 16,5мм*15,5мм и другая мелкая фурнитура(одножильные и многожильные провода, болтики, гаечки).

Вот схема, по которой нужно собирать:

Вот наглядная схема:

Теперь закрепите транзистор на радиатор, а радиатор на основание.

Следующим шагом будет подготовка кулера. Снимите наклейку, затем резиновую заглушку с обратной стороны. Маленькой отвёрткой или пинцетом снимите шплинт (стопорное колечко). Снимите лопасти.

Вы увидите 4 катушки, прикрепленные к микросхеме тремя ножками. Возьмитесь пассатижами за сердечник катушек, вставьте маленькую отвертку в место для оси лопастей. Крепко держа все за сердечник, ударьте молотком по отвертке. Микросхема с катушками должны отделиться от всей конструкции.

Отпаяйте катушки от микросхемы. У микросхемы 3 ножки, вы должны вставить обрезок вывода в качестве четвертой. К одной из ножек припаяно 2 проводка, отпаяйте один и припаяйте его к новой ножке, чтобы к каждой ножке шло по одному проводу.

Наденьте узел с катушками обратно на ось, припаяйте 4 разноцветных провода и выведите их наружу.

Сфера применения

Изготовить ветрогенератор, взяв за основу вентилятор, казалось бы, чего проще? Однако на пути такого технического перевоплощения встанут несколько препятствий. Как их преодолеть, для чего может быть применена ветроэлектростанция, изготовленная из вентилятора, и расскажет эта статья.

Сразу стоит оговориться, рассчитывать, что плодом трудов станет агрегат, которым можно заряжать промышленные аккумуляторы или отапливать здания не стоит. Зарядка мобильного телефона, или работа небольшого осветителя на светодиодах — примерно такие задачи сможет решать ветрогенератор, явившийся, если можно так выразиться, продуктом глубокой переработки вентилятора.

Отчего же внешне такие похожие устройства для перевоплощения друг в друга требуют усилий? Этому есть технические объяснения, которые нелишним будет рассмотреть.

Различия

Особенности конструкции электродвигателей и генераторов

Движение электронов, электрический ток, происходит в проводнике под воздействием изменяющегося внешнего магнитного поля. Аналогично устроены и электрические двигатели, только в обратной последовательности — на движущиеся заряженные частицы в магнитном поле действует сила, которая и заставляет проводник менять свое положение в пространстве, т.е. приводит к движению ротора.

Как в генераторах, так и в двигателях это самое магнитное поле создается в статоре, или в роторе, в зависимости от модели, постоянными магнитами или электромагнитами (обмотками возбуждения). Если мотор притягивает железные предметы — он на постоянных магнитах. Этот вариант с точки зрения использования его в качестве генератора оптимален, так как не требует никакой модернизации.

«Применение же для получения электроэнергии двигателя с обмотками возбуждения окажется сложнее, ведь придется обеспечить питание этих самых обмоток. А это заметно усложнит конструкцию».

Так на самом деле работает автомобильный генератор. На ротор через «таблетку», щетки и контактные кольца подается 12В. Вместе с ротором вращается созданное им магнитное поле. Оно-то и создает электрический ток в обмотке статора (конечно же, вырабатывается тока больше чем тратится, иначе зачем нужен генератор).

Когда АКБ полностью заряжена, а мощные потребители выключены, ток на ротор почти не подается и генератор вращается вхолостую. А используя автогенератор в качестве ветроэлектростанции, этот ток придется подавать и контролировать его параметры.

Иногда предлагают для такого случая удалять обмотки с ротора и вместо проволоки вклеивать ниодимовые постоянные магниты (в этом случае ток не нужен), но это тема для отдельной статьи.

Особенности геометрии лопастей

Так как конструкция вентилятора отвечает цели — толкать массу воздуха, а , наоборот, приводятся в движение течениями воздушных масс, то и геометрия будет незначительно отличаться. Угол атаки кончиков лопастей обоих типов мало различается.


Чем ближе перемещаться к центру — наблюдаются различия.

Винт ветроэлектростанции:

Участок лопасти у центра практически не участвует в выработке энергии, так как движется во много раз медленнее, чем вся лопасть, поэтому его делают с углом атаки равным нулю, чтобы воздушные массы могли спокойно проходить, не создавая заторов в виде завихрений. У неподвижного вентилятора потребности в изменении угла атаки лопасти нет.

Так как в целом геометрия схожа, то пропеллер вентилятора будет работать и как ветрогенератор.

Скорость вращения

Вряд ли хотя бы один вентилятор под воздействием ветра выдаст такие же обороты, как будучи включенным в сеть. Поэтому не стоит надеяться, что ветрогенератор, мощностью 100 Ватт, сделанный из вентилятора 12в, такое же напряжение выдаст и обеспечит работу потребителей в 100 Ватт.

Примеры изготовления

Из детского игрушечного вентилятора на батарейках

Такой ветрогенератор изготовить проще простого. В игрушке используется электромотор чаще всего на 1,5 или 4,5 вольта с независимым возбуждением от постоянных магнитов. Имеется готовый винт. Необходимо достать батарейки, к контактам + и − подсоединить провода, поместить вентилятор в поток воздуха, включить, и можно замерять на контактах характеристики вырабатываемого тока.

Чтобы такой ветрогенератор работал лучше, лопастям винта не помешает добавить мощности, например, накладками, вырезанными из пластиковой трубы в форме лепестков. Ну и придется снабдить агрегат некоторыми другими обязательными для электроветряка элементами.

Вентилятор придется защитить от осадков специальным кожухом и закрепить на подвижной раме. Подвижное крепление рамы к мачте, должно включать в себя контактно-щеточный механизм (без него ток вниз не передашь). Противоположный конец рамы снабжают стабилизатором, его задача — разворачивать ветрогенератор навстречу воздушным потокам.

То, на что можно рассчитывать, если двигатель 4,5В, это 2,5…3В максимум, не хватает даже для зарядки телефона (как правило 5В). Но питание светодиодов, которыми, к примеру, можно обозначить границы въездных ворот, или осветить границы садовой дорожки, такое устройство при достаточном ветре вполне способно обеспечить.

Из вентилятора охладителя процессора (кулера)

Этот вентилятор имеет чаще всего двигатель 12в, как и в предыдущем примере на постоянных магнитах и превращение его в ветрогенератор происходит в таком же порядке.

Отличия состоят в том, что:

  • лопасти кулера изначально никуда не годятся — пропеллер нужен новый;
  • вырабатываемого тока при определенной скорости ветра вполне хватает для зарядки андроида или планшета 5в (использования контроллера в этом случае не избежать и как нельзя лучше подойдет обычное автомобильное зарядное устройство).

Из вентилятора охлаждения радиатора двигателя автомобиля

Вариант посложнее, но если предыдущие варианты изначально рассматривались как игрушки, то от этой конструкции может быть вполне осязаемая отдача. Рассматриваемый ветрогенератор может служить, к примеру, для зарядки аккумулятора 12в. Запасенную в АКБ электроэнергию, пропустив через преобразователь 12/220, можно использовать в качестве домашней сети.

В конструкции применяется двигатель от вентилятора 24в. Лопасти укорачивают, оставляя лишь фрагменты, необходимые для крепления новых — вырезанных из трубы ПВХ (использовать для этих целей бутылки ПВХ не получится — из-за малой жесткости их будет попросту загибать ветром).

Вырезаются лопасти примерно по такому шаблону, как на фото.


Количество лопастей может быть любым, чаще всего используются варианты 3, 4 или 6.

Компонуется ветрогенератор по классической схеме (Рис. 3). Напряжение, им вырабатываемое при умеренном 4…7 м/с, будет больше 12в, что позволит заряжать АКБ. В электрическую цепь должен быть добавлен диод, чтобы в случае отсутствия ветра электростанция не превратилась в вентилятор на мачте.

Не помешает и контроллер зарядки АКБ, регулирующий зарядный ток и размыкающий цепь по окончании зарядки. Можно обойтись и без него, но тогда придется постоянно следить за процессом зарядки и регулировать его вручную.


Всем здравствуйте! В сети множество схем высоковольтных генераторов отличающихся по мощности, по сложности сборки, по цене и доступности компонентов. Данная самоделка собрана из практически бросовых деталей, собрать ее сможет любой желающий. Собирался этот генератор, скажем так, для ознакомительных целей и всевозможных опытов с электричеством высокого напряжения. Примерный максимум этого генератора 20 киловольт. Так как в качестве источника питания для этого генератора не используется сетевое напряжение это дополнительный плюс с точки зрения безопасности.

На фото все необходимые детали, для сборки высоковольтного генератора.

Для сборки потребуется:

Катушка зажигания от ВАЗа
Кулер с датчиком холла
«N» канальный мосфет
Резисторы на 100 Ом и 10 кОм
Соединительные изолированные провода
Паяльник
Клеммная колодка (необязательно)
Радиатор для мосфета
Несколько саморезов
Фанерное основание для крепления деталей

Кому интересно попробую рассказать подробнее. В качестве генератора импульсов используется кулер охлаждения от компьютера или аналогичный на 12 вольт, но с одним условием – в нем должен быть встроенный датчик холла. Именно датчик холла и будет генерировать импульсы для высоковольтного трансформатора, в качестве которого, в данном случае, используется катушка зажигания от автомобиля. Выбрать подходящий вентилятор очень просто, как правило, он имеет три ввода.

На фото видно наличие трех выводов. Стандартная расцветка это красный вывод плюс питания, черный – общий (земля) и желтый – выход с датчика холла. При подаче питания на вентилятор на выходе (желтый провод) получаем импульсы, частота которых зависит от оборотов электромотора данного кулера и чем выше напряжение, тем выше частота импульсов. Повышать напряжение следует в разумных пределах - примерно 12-15 вольт, чтоб не спалить кулер и всю схему. Получаемый импульсный сигнал предстоит подать на катушку зажигания, но его необходимо усилить.

В качестве силового ключа использовал «N» канальный полевой транзистор (мосфет) IRFS640A подойдут и другие с аналогичными параметрами, или примерные на ток 5-10 ампер и напряжение вольт 50 для надежности. Мосфеты присутствуют практически во всех современных электронных схемах, будь то материнская плата компьютера или пусковая схема энергосберегающей лампы, а значит, найти подходящий не возникнет проблем.

Катушка зажигания от автомобилей ВАЗ «классика» Б117-А имеет три вывода. Центральный это высоковольтный выход, «Б+» это плюсовой 12 вольт, и общий «К» - возможно не маркируется.

Изначально схем состояла из трех компонентов: кулер, мосфет и катушка, но через непродолжительное время работы ломалась, так как выходили из строя либо мосфет, либо датчик холла. Выход – установка резисторов на 100 Ом для ограничения пускового тока с датчика холла на затвор, и подтягивающий резистор 10кОм для запирания мосфета при отсутствии импульса.

При сборке схемы транзистор следует устанавливать на радиатор желательно с применением термопасты, так как нагрев при работе существенный.

Разъем от кулера использовал в качестве клеммной колодки для подключения мосфета. В результате необходимость в пайке транзистора отпала, для подключения или замены достаточно соединить колодку с выводами транзистора.

Вентилятор закрепил сверху радиатора при помощи двух саморезов. В результате получилось, что кулер играет двойную роль – как генератор импульсов и как дополнительное охлаждение.

Владимир

Ну, про «вечные двигатели на магнитах» есть куча статей в тырьнете и этой темы касаться нет смысла — пока кто-то из этих авторов не соберёт действующую модель, которая хоть что-то бы выдавала на выходе (хоть символические микровольты!).
А пока авторам это сделать всё что-то мешает — то нет специального сплава для магнитов, то нет специального оборудования для их замысловатого намагничивания и т.д. и т.п!
А стоит обсудить то, что можно проанализировать имея элементарные знания и опыт — на уровне пионеров-юных радиолюбителей (из которых например, я и сам вышел — много десятков лет тому назад). К сожалению автор не прошёл даже такой начальной школы, а поэтому для него будет полезно ознакомиться с небольшим количеством элементарных фактов, которые я изложу.
Чтобы выяснить что кулер выдаст (а, точнее — ничего не выдаст) — достаточно его продуть пылесосом (как уже было предложено), а к выводам подсоединить тестер (мультиметр). Как вариант можно скрепить пару одинаковых кулеров одной (выдувающей) стороной друг к другу. «склейте» их небольшими кусочками пластилина или перетяните их парой резинок. На один кулер подайте 12 V, а с выводов второго — снимайте показания подключив тестер.
Понятно что он ничего не покажет — ни переменное ни постоянное, или это будут считанные милливольты (как самый лучший вариант) наведённые на коммутируемых обмотках и которые возможно, пройдут через переходы транзисторов. Как уже было сказано там стоит микросхема-коммутатор которая через транзисторные ключи попеременно подаёт напряжение на несколько обмоток, магнитное поле которых взаимодействует с постоянными магнитами в роторе (вертушке). Понятное дело что даже мизер того что может пройти через переходы транзисторов — не будет постоянным током, поскольку нет фильтрации пульсирующего тока (в виде электролитов).
Вообще чтобы понимать какие мощности можно получить с таких устройств — важно знать что обратимые электрические моторы-генераторы (а любой классический электродвигатель может работать как генератор) не могут по определению дать больше той мощности которую потребляют сами как электродвигатели.
Такие кулера имеют мощность потребления 1,5-2 W. и при работе его в режиме генератора, его мощность будет ещё менее той что он потребляет сам, как электродвигатель.
Понятно, что такие опыты можно проводить с обычными «моторами» без всяких электронных коммутаторов внутри.
Помнится что в Юном технике 70-х годов была описана самоделка из детского моторчика от игрушки, на котором был собран генератор с нагрузкой на лампочку от фонаря. При этом на вал предлагалось установить пропеллер. И как утверждал автор статьи, при установке этого «ветряка» на велик — вырабатывалась мощность достаточная для освещения дороги в ночное время.
Лично я думаю что мощности того генератора вполне хватило бы для питания современного сверхъяркого светодиода (опять же — для этого нужно было поставить выпрямитель и отфильтровать ток), но для питания лампы накаливания на ток 0,25-0,35 А (а именно такие стояли в фонариках) — явно недостаточно.
Итак автор предлагает получить от кулера мощностью в 2 W — мощность для питания трёх ламп по 70 W — т.е. 210 W?
Но как уже понятно — на выходе его не будет никакого напряжения, ни в 1V, ни тем более в 12V, и тем более постоянного!
Далее автор предлагает использовать преобразователь на 220 V. Но по фото видно что это — обычный блок питания с трансформатором! А что из себя представляет классический трансформаторный БП на 10-12 W — а именно такой китайский БП показан на фото (заметьте 10-12 W, а нам нужна мощность в 210 W!)?
Итак в упрощённом виде это — трансформатор (с понижающим коэффициентом трансформации), выпрямитель (диодный мост) и фильтр (электролитические конденсаторы). Стабилизатора в нём скорее всего — нет.
Ну ведь, просто представляя схему этого БП совершенно понятно что подав на его выход постоянное напряжение (которое как наивно полагает автор, должно появиться на выводах кулера), вы не получите — ничего! Неважно — окажутся ли диоды моста включенными в прямом или в обратном направлении… В первом случае на обмотку поступит постоянный ток, а во втором — нет. Но при этом на выходе трансформатора не появиться никакого напряжения — ни постоянного ни переменного! И убрав диоды — вы ничего не получите, поскольку чтобы трансформатор вам сделал из 12 V>220 V, на него нужно подать ПЕРЕМЕННОЕ напряжение!
Опять же не забывайте что БП у нас (по внешнему виду) не более 12W, а значит и его выходная мощность (в инверсном включении) не будет превышать 12W!
Автор как я понял не понимает разницы между обычными трансформаторными БП и преобразователями, но при этом нужно понимать что если преобразователь преобразует переменное напряжение 220 V — в низкое постоянное (например как компьютерных БП), то их нельзя использовать для получения переменного напряжения 220 V из низкого постоянного напряжения — лишь «включив его наоборот», как наивно полагает автор. Для этих целей можно использовать лишь тот преобразователь, который изначально создан для получения из постоянного, низкого в переменное-сетевое (как например ИБП для компьютеров). И это совершенно понятно любому радиотехнику — поскольку схемные решения (способы) для получения требуемых выходных напряжений у них различны!

Ветер - это бесплатная энергия! Так давайте же её использовать в личных целях. Если создание ВЭС в промышленных масштабах это очень дорого, потому что кроме генератора нужно провести ряд исследований и расчётов, государство не берет на себя такие расходы, а инвесторам в странах бывшего СССР - это, почему-то не вызывает особого интереса. То в частном порядке можно сделать мини-ветряк для собственных нужд. Стоит понимать, что проект перевода вашего дома на альтернативную энергию очень дорогое занятие.

Как уже было сказано: нужно произвести длительные наблюдения и расчёты, чтобы подобрать оптимальное соотношение размеров ветряного колеса и генератора, подходящее к вашему климату, розе ветров и среднегодовой скорости ветра.

Эффективность ветроэлектрической установки в пределах одного региона может отличаться в разы, это связано с тем, что движение ветра зависит не только от климатического пояса, но и от рельефа местности.

Однако вы можете узнать, что такое ветроэнергетика с минимальными затратами собрав бюджетную установку для питания маломощной нагрузки, типа смартфона, лампочек или радиоприёмника. При должном подходе вы можете обеспечить электроэнергией небольшой дом или дачный участок.

Давайте рассмотрим каким образом можно сделать простейшую ветроэлектрическую установку своими руками.

Маломощные ветряки из подручных средств

Компьютерный кулер представляет собой бесколлектроный двигатель, который в своем первоначальном виде не представляет практической ценности.

Его нужно перемотать, так как в оригинале обмотки соединены неподходящим образом. Мотать катушки поочередно:

    По часовой стрелке;

    Против часовой стрелки;

    По часовой стрелке;

    Против часовой стрелки.

Соединять соседние катушки нужно последовательно, а еще лучше мотать одним куском провода переходя от одного паза к другому. Толщину провода в этом случае подбирать произвольно, лучше будет если вы намотаете как можно больше витков, а это возможно при использовании наименее тонким проводом.

Выходное напряжение с такого генератора будет переменным, а его величина будет зависеть от оборотов (скорости ветра), установите диодный мост из диодов Шоттки, чтобы выпрямить его до постоянного, обычные диоды подойдут, но будет хуже, т.к. на них упадёт напряжение от 1 до 2-х вольт.

Лирическое отступление, немного теории

Запомните величина ЭДС равняется:

где L - длина проводника помещенного в магнитное поле; V - скорость вращения магнитного поля;

При модернизации генератора вы можете влиять только на длину проводника, то есть на количество витков каждой из катушек. Количество витков - определяет выходное напряжение, а толщина провода - максимальную токовую нагрузку.

На практике влиять на скорость ветра нельзя. Однако из этой ситуации тоже есть выход, можно, узнав типовую скорость ветра для вашей местности спроектировать подходящий по оборотам винт для ветроэлектрической установки, а также редуктор или ременную передачу, для обеспечения достаточных оборотов для генерации нужного по величине напряжения.

ВАЖНО: Быстрее не значит лучше!!! При слишком большой скорости вращения ветрогенератора сократиться его ресурс, ухудшаться смазочные свойства втулок или подшипников ротора, и он заклинит, а быстрее всего произойдет пробой изоляции обмоток в генераторе

Генератор состоит из:

Увеличиваем мощность генератора из компьютерного кулера

Во-первых, чем больше лопастей и диаметр колеса - тем лучше, поэтому присмотритесь к 120-мм кулерам.

Во-вторых, мы уже сказали, что напряжение зависит и от магнитного поля, дело в том, что промышленные генераторы высокой мощности имеют обмотки возбуждения, а низкой мощности - сильные магниты. В кулере магниты крайне слабые и не позволяют добиться хороших результатов от генератора, да и зазор между ротором и статором весьма велик - порядка 1 мм, и это при и без того слабых магнитах.

Решение этой проблемы кардинально изменить конструкцию генератора. Вернее, от кулера потребуется только крыльчатка, в качестве самого генератора применим моторчик от принтера или любой другой бытовой техники. Наиболее часто встречаются щеточные двигатели с возбуждением от постоянных магнитов.

В результате это будет выглядеть так.

Мощности подобного генератора хватит, чтобы запитать светодиоды, радиоприемник. Для подзарядки телефона его не хватит, телефон будет отображать процесс заряда, но ток будет крайне мал, до 100 Ампер, при ветре 5-10 метров в секунду.

Шаговые двигателя в роли ветрогенератора

Шаговый двигатель очень часто встречается в компьютерной и бытовой технике, в различных проигрывателях, флоппи-дисководах (интересны старые модели 5.25”), принтерах (особенно матричных), сканерах и т.д.

Данные двигатели без переделок могут работать в роли генератора, они представляют собой ротор с постоянными магнитами, и статор с обмотками, типовая схема подключения шагового двигателя в режиме генератора изображена на рисунке.

В схеме установлен линейный стабилизатор на 5 Вольт, типа L7805, что позволит без опасения подключать мобильные телефоны к такому ветряку для их зарядки.

На фото генератор из шагового двигателя с установленными лопастями.

Двигатель в конкретном случае с 4-мя выходными проводами, схема соответственно под него. Двигатель с такими габаритами в режиме генератора выдаёт примерно 2 Вт при слабом ветре (скорость ветра около 3 м/с) и 5 м/с при сильном (до 10 м/с).

Кстати вот аналогичная схема со стабилитроном, вместо L7805. Позволяет заряжать Li-ion батареи.

Доработка самодельного ветряка

Чтобы генератор работал эффективнее нужно сделать ему направляющий хвостовик и закрепить его на мачте подвижно. Тогда при изменении направления ветра - будет изменяться направление ветрогенератора. Тогда возникает следующая проблема - кабель, идущий от генератора к потребителю будет закручиваться вокруг мачты. Чтобы это решить нужно обеспечить подвижный контакт. На Ebay и Aliexpress продаётся готовое решение.

Нижних три провода - неподвижны идут вниз, а верхний пучок проводов - подвижен, внутри установлен скользящий контакт или щеточный механизм. Если у вас нет возможности купить, проявите смекалку, и, вдохновившись решением конструкторов автомобиля Жигули, а именно реализацией подвижного контакта кнопки сигнала на руле и сделайте что-то похожее. Или воспользуйтесь контактной площадкой от электрочайника.

Соединив разъёмы, вы получите подвижный контакт.

Мощный ветрогенератор из подручных средств.

Для получения большей мощности вы можете использовать два варианта:

1. Генератор из шуруповерта (10-50 Вт);

Из шуруповерта понадобиться только моторчик, вариант аналогичен предыдущему, в качестве винта вы можете использовать лопасти от вентилятора, это увеличит итоговую мощность вашей установки.

Вот пример реализации такого проекта:

Обратите внимание как здесь реализована шестеренчатая повышающая передача - вал ветрогенератора расположен в трубе, на его конце расположена шестерня, которая передаёт вращение меньшей шестерне закрепленной на валу двигателя. Повышение оборотов двигателя имеет место и в промышленных ветряных электроустановках. Редуктора применяются повсеместно.

Однако в условиях самоделки изготовить редуктор становиться большой проблемой. Вы можете извлечь редуктор из электроинструмента, он там нужен чтобы понизить высокие обороты на валу коллекторного двигателя в нормальные обороты патрона на дрели, или диска болгарки:

В дрели установлен планетарный редуктор;

    В болгарке установлен угловой редуктор (станет полезным для монтажа некоторых установок и уменьшит нагрузку с хвоста ВЭУ);

    Редуктор от ручной дрели.

Такой вариант самодельного ветрогенератора уже может заряжать 12 В аккумуляторы, однако нужен преобразователь для формирования зарядного тока и напряжения. Эту задачу можно упростить применив автомобильный генератор.

Преимущество такого генератора - возможность использовать его для зарядки автомобильных аккумуляторов, в принципе он для этого и предназначен. Автогенераторы имеют встроенное реле-регулятор напряжения, что избавляет от необходимости покупать дополнительные стабилизаторы или преобразователи.

Однако автолюбители знают, что на низких холостых оборотах, примерно 500-1000 Об/мин мощность такого генератора мала, и он не обеспечивает должного тока для заряда аккумулятора. Это приводит к необходимости подключения к ветроколесу через редуктор или ременную передачу.

Отрегулировать количество оборотов при нормальной для ваших широт скорости ветра можно с помощью подбора передаточного числа либо с помощью правильно спроектированного ветроколеса.

Полезные советы


Пожалуй, самая удобная для повторения конструкция мачты для ветряка - изображена на картинке. Такая мачта растягивается на тросах, закрепленных на держателях в земле, что обеспечивает устойчивость.

Важно: Высота мачты должна быть как можно большей примерно 10 метров. На большей высоте ветер сильнее, потому что для него нет препятствий в виде наземных сооружений, холмов и деревьев. Ни в коем случае не устанавливайте ветрогенератор на крыше своего дома. Резонансные колебания крепежных конструкций могут вызвать разрушение его стен.

Позаботьтесь о надёжности несущей мачты, ведь конструкция ветряка на базе такого генератора значительно утяжеляется и представляет собой уже довольно серьезное решение, которое может осуществлять автономное электроснабжение дачи с минимальным набором электрических приборов. Устройства, которые работают от 220 Вольт можно запитать от инвертора 12-220 В. Самый распространённый вариант такого инвертора - .

Лучше использовать генераторы от дизельных, в т.ч. грузовых автомобилей, ведь они рассчитаны для работы на низких оборотах. В среднем дизельный двигатель крупного грузовика работает в диапазоне оборотов от 300 до 3500 об/мин.

Современные генераторы выдают 12 или 24 Вольт, а ток в 100 Ампер - уже давно стал нормальным. Проведя несложные вычисления можно определить, что такой генератор максимально выдаст вам до 1 кВт мощности, а генератор от жигулей (12 В 40-60 А) 350-500 Вт, что уже довольно приличная цифра.

Каким должно быть ветроколесо для самодельной ВЭУ?

Я упомянул в тексте о том, что ветроколесо должно быть большим и с большим количеством лопастей, на самом деле это не так. Это утверждение было справедливо для тех микро-генераторов, которые не претендуют на звание серьезных электрических машин, а скорее экземпляры для ознакомления и досуга.

На самом деле проектирование, расчёт и создание ветроколеса - это очень сложная задача. Энергия ветра будет использоваться рациональнее, если оно выполнено очень точно и идеально выведен «авиационный» профиль, при этом он должен быть установлен с минимальным углом к плоскости вращения колеса.

Реальная мощность ветроколес с одинаковым диаметром и разным количеством лопастей - одинаково, разница лишь в скорости их вращения. Чем меньше крыльев - тем больше оборотов в минуту, при том же ветре и диаметре. Если вы собираетесь добиться максимальных оборотов вы должны максимально точно смонтировать крылья с минимальным углом к плоскости их вращения.

Ознакомьтесь с таблицей из книги 1956 года «Самодельная ветроэлектростанция» изд. ДОСААФ Москва. На ней показана связь диаметра колеса, мощности и оборотов.

В домашних условиях эти теоретические выкладки дают мало толку, любители делают ветроколеса из подручных средств, в ход идёт:

  • Листы металла;

    Пластиковые канализационные трубы.

Собрать своими руками быстроходное 2-4 лопастное ветроколесо можно из канализационных труб, кроме них нужна ножовка или любой другой режущий инструмент. Использование этих труб обусловлено их формой, после обрезки они имеют вогнутую форму, что обеспечивает высокую отзывчивость к потокам воздуха.

После обрезки их закрепляют с помощью БОЛТОВ на металлической, текстолитовой или фанерной болванке. Если вы собрались делать её из фанеры - лучше переклейте и скрутите саморезами с обеих сторон несколько слоев фанеры, тогда у вас получится добиться жесткости.

Вот идея двух лопастной цельной крыльчатки для генератора из шагового двигателя.

Выводы

Вы можете сделать ветроэлектрическую установку начиная от малых мощностей - единиц Ватт, для питания отдельных светодиодных светильников, маячков и мелкой техники, до хороших значений мощности в единицах киловатт, накапливать энергию в аккумуляторе, использовать её в исходном виде или преобразовывать до 220 Вольт. Стоимость такого проекта будет зависеть от ваших потребностей, пожалуй, самым дороги элементом является мачта и аккумуляторы, может оказаться в пределах 300-500 долларов.