Блок питания умзч. Блок питания умзч Импульсный бп усилителя нч 2х200

Набор для самостоятельной сборки усилителя НЧ. Набор выслали наложенным платежом. Пришло всё в аккуратно упакованной пластиковой коробке. Печатные платы качественно сделанные. Набор с подробным описанием.

РАДИОКОНСТРУКТОР “ DJ 200” (Ди-джей 200)

Назначение и применение

Модуль звукового усилителя мощности может быть использован для самых разных целей. Большая мощность нужна, например, в первую очередь для проведения праздничных мероприятий и дискотек. Достаточно мощные дискотечные колонки так же легко могут быть изготовлены в любительских условиях с использованием динамиков достаточной мощности или набора некоторого количества одинаковых динамиков меньшей мощности. Высокое выходное напряжение (до 35 Вольт) позволяет использовать усилитель без трансформатора в 30-ти вольтовых локальных радиотрансляционных сетях, например для школьного радиоузла. В домашних условиях Вы можете использовать модуль для усиления сигнала суббасового канала в ставших в последнее время популярными звуковых системах с одним низкочастотным каналом. Для создания стерео усилителя необходимо использовать два модуля усилителя. Кроме того, имея два таких модуля, Вы можете включить их по мостовой схеме и получить на нагрузке 8 Ом мощность 400 Ватт. Мощности модуля достаточно для «раскачки» практически любого по мощности современного динамика. Наращивая количество одинаковых модулей можно создавать многоканальные и многополосные звуковые системы практически любой мощности. Высокая мощность усилителя позволяет использовать его в профессиональных целях, что позволяет быстро окупить затраченные на него деньги.

Для создания законченного усилителя Вы можете дополнить модуль усилителя различными дополнительными устройствами, такими как индикатор перегрузки, индикатор выходной мощности, задержка подключения нагрузки, защита от перегрузки, короткого замыкания на выходе, защита от постоянного напряжения на выходе и др. Схемы этих устройств Вы можете найти во многих популярных изданиях.

В качестве источника сигнала усилителя предполагается использовать стандартный микшерный пульт, который обычно используют музыканты и ди-джеи, и который имеет стандартное выходное напряжение 775 мВ.


Технические характеристики

  1. Напряжение питания -+(24-60)В, -(24-60)В,
  2. Потребляемый ток - 3,5А,
  3. Входное напряжение - 0,775В (ОдБ), (0,1 - 1В)
  4. Выходная синусоидальная мощность на нагрузке 40ма - 200Вт,
  5. Выходная синусоидальная мощность на нагрузке 80м - 125Вт, (400Вт в мост),
  6. Диапазон частот - 20-20 000 Гц,
  7. Нелинейные искажения - не более 0,05%.


Схема

Принципиальная схема усилителя содержит 4 основных каскада усиления: входной неинвертирующий дифференциальный усилитель DA1, промежуточный усилитель тока на транзисторах VT1 и VT2, предоконечный усилитель напряжения на транзисторах VT3 и VT4, и выходной эмиттерный повторитель на транзисторах VT5-VT8. Инвертирующими являются только каскады 2 и 3, поэтому в целом усилитель неинвертирующий, что является обязательным условием профессионального усилителя, обеспечивающим синфазную, работу разнотипных усилителей в одном комплексе. Схема полностью симметрична, что обеспечивает простоту, высокую надежность и малый уровень искажений. Малый уровень искажений обеспечивают две петли обратной связи, местная и общая.

Входной конденсатор С1 предотвращает попадание на вход усилителя любого постоянного смещения. При этом резистор R3 обеспечивает привязку входа 3 микросхемы DA1, а следовательно, и всего усилителя, к нулю питающего напряжения. Элементы R1 и С2 образуют фильтр предотвращающий попадание на вход усилителя случайных высокочастотных (ультразвуковых) колебаний и очень коротких коммутационных выбросов. На инвертирующий вывод 2 микросхемы DA1 через резистор R2 заводится сигнал общей обратной связи. Обратная связь снижает нелинейные искажения, стабилизирует рабочую точку усилителя и задает общий коэффициент усиления. Он определяется по формуле (R2+R4)/R4=(47+l)/l=48. Таким образом 0,775 В х 48=37,2 В. Изменяя резистор R2 можно изменять чувствительность усилителя. Но повышение усиления приводит к пропорциональному увеличению искажений и наоборот если добавить дополнительный входной усилитель и вдвое или вчетверо снизить усиление, то можно получить более высокое качество звука. Конденсаторы С4 и С5, образующие неполярный электролитический конденсатор, служат для того, чтобы обеспечить стопроцентную обратную связь по постоянному току. Т.е. если для переменного тока на вывод 2 подается только 1/48 часть выходного напряжения, то для постоянного напряжения, благодаря тому, что конденсаторы «выводят из игры» R4, через резистор R2 подаются все 100% выходного напряжения. Эго обеспечивает очень высокую стабильность усилителя по постоянному току, иными словами практически полное отсутствие на выходе постоянного напряжения.

Использование на входе операционного усилителя очень упростило схему усилителя, но потребовало обеспечить для него стабильное питание +/- 15В. Эту задачу решают элементы VD1,VD2, R9,R10, СЗ,С6.

Дальнейшее усиление по напряжению осуществляет каскад на транзисторах VT1-VT4. Начальный ток первых двух транзисторов обеспечивают резисторы R7 и R8. Создаваемый ими ток образует на диодах VD3, VD4 необходимое напряжение, прилагаемое к базам транзисторов. Диоды служат для температурной стабилизации предоконечного каскада. Ток коллектора первых двух транзисторов является током баз предоконечных транзисторов. Их ток коллекторов в свою очередь дополнительно стабилизируется резисторами R19 и R20. Ток покоя предоконечных транзисторов равен примерно 1-5 мА. Его можно проконтролировать измерением падения напряжения на резисторах R19 и R20 и делением его на 10. При необходимости ток можно изменять подбором резисторов R5 или R6. Коэффициент усиления этих двух каскадов определяется обратной связью, которая обеспечивается парами резисторов R17,R13 и R18,R14.

Для обеспечения достаточной мощности оконечный каскад выполнен на двух парах комплементарных транзисторов VT5- VT8. Транзисторы работают без тока покоя. Это значительно упрощает схему, исключает необходимость их термостабилизации, облегчает их тепловой режим, повышает экономичность усилителя. Частичное смещение на базах транзисторов создается напряжением, создаваемым на диоде VD5 протекающим через него током покоя предоконечного каскада. Но этого напряжения недостаточно для открывания транзисторов. Искажения типа ступенька предотвращаются благодаря высокому быстродействию операционного усилителя DA1. Низкоомные резисторы в эмиттерах оконечных транзисторов выравнивают их токи для обеспечения их равномерной загрузки. Диоды VD6 и VD7 защищают выходные транзисторы от обратного напряжения, выбросы которого могут возникнуть вследствие индуктивного характера нагрузки. Элементы LI, R27 и С12 обеспечивают устойчивость усилителя в области высоких частот. Причем катушка призвана нейтрализовать емкость соединительных проводов между усилителем и колонкой. Если усилитель расположен в колонке и соединен с динамиком разрозненными проводами, то надобность в ней отпадает. И наоборот, если усилитель работает, например, без согласующего трансформатора на радиотрансляционную линию, эта катушка должна иметь вчетверо большее количество витков и устанавливается отдельно от платы.

Для включения усилителя по мостовой схеме служит точка «2». В эту точку на усилитель второго, противофазного, плеча подается через резистор равный R2 (47кОм) сигнал с выхода первого плеча. Элементы С1Д1 и С2 у усилителя второго плеча можно не устанавливать.

При большом сигнале и возникновении ограничения происходит разрыв цепи обратной связи и в точке «1» появляются импульсы амплитудой 15В. Эти импульсы можно использовать для работы пикового индикатора, подав их через 10-12-тивольтовый стабилитрон на его ключ.

Точки «3» и «4» можно использовать для подключения схемы защиты от короткого замыкания на выходе.



Указания по сборке

Перед пайкой выводы всех элементов необходимо зачистить и отформовать. Формовку выполните согласно расстоянию между отверстиями на плате для данного элемента «плечиками» или «зигом». Крупные элементы рекомендуется установить над платой или вертикально для лучшего их охлаждения. Электролитические конденсаторы лучше поставить на колечки, отрезанные от подходящей по диаметру толстостенной поливинилхлоридной трубки. При монтаже особо пристальное внимание уделите правильной полярности всех диодов. У некоторых маркируется плюс, у некоторых - минус. Ошибка в полярности у любого из 7-ми диодов приведет при первом включении к выходу из строя дорогостоящих оконечных транзисторов. Диоды VD3 и VD5 устанавливают над платой на высоте 5-10 мм и приклеивают каплей клея к радиаторам предоконечных транзисторов, и после высыхания клея припаивают. Предоконечные транзисторы также вначале крепят к плате и радиаторам, а потом уже припаивают. Перед установкой на плату их выводы загибают с радиусом на корпусе резистора MJTT-2. Контактная площадка транзистора должна быть смазана теплопроводящей пастой или в крайнем случае любой смазкой, чтобы в зазоре не оставался воздух. Гайки должны быть со стороны транзистора.

Номиналы некоторых элементов могут отличаться от указанных в схеме на 20%. Для комплектования могут использоваться другие типы полупроводниковых приборов имеющие аналогичные характеристики.

В корпусе усилителя плату необходимо расположить так, чтобы был свободный доступ воздуха для охлаждения или, чтобы она была в потоке охлаждающего воздуха при охлаждении вентилятором. Монтажные провода должны быть по возможности меньшей длины. Все общие провода обязательно должны соединяться в одну точку в одном месте в точке соединения электролитических конденсаторов фильтра питания. Недопустимо использовать в качестве общего провода корпус. Корпус должен быть соединен с общим проводом только в одной точке! Провода от коллекторов выходных транзисторов также должны подключаться к лепесткам конденсаторов фильтра питания.

Проверка и настройка

После сборки модуля необходимо тщательно смыть с платы остатки канифоли. Эго улучшает внешний вид платы и позволяет проконтролировать качество пайки. Канифоль лучше смывать ватным тампоном, смоченным в ацетоне или растворителе 646. С помощью лупы убедитесь в отсутствии замыканий между соседними близкорасположенными контактными площадками. Проверьте правильность расположения всех элементов и правильность полярности всех диодов и электролитических конденсаторов.

При первом включении между усилителем и блоком питания обязательно необходимо включить два резистора на 50-100 Ом мощностью 1-2 Вт. Это предотвратит выход из строя оконечных транзисторов в результате ошибки в монтаже. Нагревание этих резисторов после включения говорит именно о такой ошибке. Первое включение и проверку работы без нагрузки можно проводить без выходных транзисторов, они работают только при наличии нагрузки.

В первую очередь проверьте авометром отсутствие постоянного напряжения на выходе, а затем все остальные, указанные на схеме постоянные напряжения. Падение напряжения на резисторах R19 и R20 можно подкорректировать подбором резисторов R5 или R6. Увеличение сопротивления резистора приведет к увеличению указанного напряжения.

При наличии генератора и осциллографа на вход подают синусоидальный сигнал частотой 1 кГц и проверяют по экрану осциллографа качество синусоиды и симметричность ограничения синусоиды при большом сигнале. Далее можно убрать защитные резисторы и подключить нагрузочный резистор ПЭВ-25-3,9 Ом помещенный в стакан с водой и также проверить качество синусоиды и симметричность ограничения теперь уже с нагрузкой.

При отсутствии осциллографа, после проверки режимов по постоянному току можно сразу убирать защитные резисторы и проводить испытание с реальным сигналом на реальной нагрузке на слух. Нагрев резистора R27 говорит о высокочастотном возбуждении. Его можно снять установкой конденсатора 10пФ между точками 1 и 2.

Радиаторы

Радиаторы для охлаждения выходных транзисторов в комплект радиоконструктора не входят. Это связано с тем, что модуль может использоваться для самых различных целей. Например, при использовании в активной акустической колонке радиатор должен иметь вид плоской пластины с рёбрами, установленной на задней стороне колонки, а при использовании в усилителе это могут быть радиаторы, устанавливаемые внутри усилителя и обдуваемые вентилятором или радиаторы установленные на задней стенке или на боковых стенках усилителя. При использовании усилителя только с нагрузкой 8 Ом достаточно только одной пары оконечных транзисторов, и соответственно радиаторы могут быть меньше. И, напротив, при мостовом включении, на один радиатор могут устанавливаться по 4 выходных транзистора. Кроме того, отсутствие в комплекте радиаторов делает конструктор более доступным по цене.

Блок питания

Усилитель рассчитан на работу с самым простым двуполярным источником питания с типовой схемой, состоящий из трансформатора с обмоткой со средней точкой, четырех диодов и двух конденсаторов емкостью не менее 10 000 мкф каждый. Выходное напряжение холостого хода 2x56 В получается после выпрямления при напряжении вторичной обмотки трансформатора равном 2x42 В. Учитывая, что реально звуковой усилитель не выдает непрерывно полную мощность, мощность силового трансформатора может быть всего 160-180 Вт. Возможно использовать два одинаковых трансформатора на 42 В.

Диоды или диодный мост любые на ток 5-10 Ампер и напряжение не менее 100 Вольт. Для мостового усилителя потребуются небольшие радиаторы.

Очень важное условие - на выходе блока питания должны быть установлены предохранители та ток 5А, для мостового усилителя - на 10 А. Это необходимая защита от короткого замыкания та выходе. При наладке предохранители сразу не ставятся, а к контактам держателей припаивают указанные выше защитные резисторы.

Скомплектовано: «Звук-сервис» - www.zwi3k-serwis.narod2.ru . Вопросы, замечания, предложения, заказы по электронной почте -

Усилитель 2 по 200 Ватт. Схема.

В этой статье представлена схема одного канала усилителя, способного на нагрузке 4 Ома развить мощность 200 Ватт. Усилитель, собранный по данной схеме, кроме высокой выходной мощности обладает достаточно низким уровнем шумов. Принципиальная схема изображена на рисунке ниже:

Входной каскад усилителя собран на транзисторах А1015. Перед тем как впаивать их на плату не поленитесь проверить их коэффициент передачи тока на соответствие параметрам, указанным в даташите на этот транзистор. Ссылка на даташит ниже:

На выходе усилителя параллельно резистору 10 Ом стоит катушка. Ее намотка осуществляется на оправку 9,5 мм в диаметре, мотается 10 витков провода ПЭВ-2 1,0 мм. Катушка бескаркасная.

Схема блока питания для этого усилителя изображена на следующем рисунке:

При питании усилителя от такого источника максимум, что вы сможете выжать, это примерно Ватт 150 на канал. Для получения мощности 200Ватт на канал необходимо использовать трансформатор с двумя симметричными обмотками по 40 вольт, и способных выдерживать ток нагрузки порядка 10 ампер. Но это еще не все. Необходимо так же будет заменить транзисторы пред-оконечного и оконечного каскада на более мощные, то есть: транзисторы D1047 заменить на 2SC5200, транзисторы B817E заменить на 2SA1943, транзисторы TIP41 меняются на MUE15032, а TIP42 на MUE15033. Применение указанных на принципиальной схеме номиналов элементов и использование менее мощного трансформатора производилось с целью удешевления конструкции в целом.

Печатная плата (на плате размещены оба канала усилителя, а так же выпрямительные диоды и емкости блока питания):

Вид на печатную плату со стороны элементов:

Схема внешних подключений к плате усилителя:

BM2033
Усилитель НЧ 100 Вт (TDA7294, готовый блок)
1405 руб.

Предлагаемый блок - это надежный мощный усилитель НЧ, обладающий малыми габаритами, минимальным числом внешних пассивных элементов обвязки, широким диапазоном питающих напряжений и сопротивлений нагрузки. Усилитель можно использовать как на открытом воздухе, так и в помещении в составе Вашего музыкального аудиокомплекса. Усилитель хорошо зарекомендовал себя как УНЧ для сабвуфера.
Внимание! Данный усилитель требует ДВУПОЛЯРНОГО источника питания и, если Вы планируете его использовать в автомобиле от аккумулятора, то в таком случае понадобятся ДВА АККУМУЛЯТОРА или один аккумулятор совместно с NM1025 .

Технические характеристики BM2033
Параметр Значение
Uпит. постоянное ДВУПОЛЯРНОЕ, В ±10...40
Uпит. ном. постоянное ДВУПОЛЯРНОЕ, В ±40
Iпотр. макс. при Uпит. ном. 100 Вт / 36 В = 2,5 А
Iпокоя, мА 60
Рекомендуемый сетевой источник питания
в комплект не входит
трансформатор с двумя
вторичными обмотками ТТП-250 +
диодный мост KBU8M +
ECAP 1000/50V (2 шт.),
либо два блока питания S-100F-24 (не для макс. мощности)
либо NT606 (не для макс. мощности)
Рекомендуемый радиатор, в комплект не входит.
Размер радиатора достаточен, если
при работе установленный на нем элемент
не нагревается более 70 °С (при касании рукой - терпимо)
205AB0500B , 205AB1000B
205AB1500B , 150AB1500MB
Устанавливать через изолятор КПТД !
Режим работы АВ класс
Uвх., В 0,25...1,0
Uвх.ном., В 0,25
Rвх., кОм 100
Rнагр., Ом 4...
Rнагр.ном., Ом 4
Рмах. при Кгарм.=10%, Вт 1 х 100 (4 Ом, ±29 В),
1 х 100 (6 Ом, ±33 В),
1 х 100 (8 Ом, ±38 В)
Тип микросхемы УМЗЧ TDA7294
fраб., Гц 20...20 000
Динамический диапазон, Дб
КПД при f=1кГц, Pном.
Ксигн./шум, дБ
Защита от короткого замыкания Да
Защита от перегрузки по току
Защита от перегрева Да
Габаритные размеры, ДхШхВ, мм 43 x 33
Рекомендуемый корпус
в комплект не входит
Температура эксплуатации, °С 0...+55
Относительная влажность эксплуатации, % ...55
Производство Контрактное производство
в России
Гарантийный срок эксплуатации 12 месяцев с даты покупки
Срок эксплуатации 5 лет
Вес, г
Комплект поставки BM2033 Описание BM2033

УНЧ выполнен на интегральной микросхеме TDA7294. Эта ИМС представляет собой УНЧ класса АВ. Благодаря широкому диапазону питающих напряжений и возможности отдавать ток в нагрузку до 10 А, микросхема обеспечивает одинаковую максимальную выходную мощность на нагрузках от 4 Ом до 8 Ом. Одной из основных особенностей этой микросхемы является применение полевых транзисторов в предварительных и выходных каскадах усиления.
Конструктивно усилитель выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в корпус, для этого зарезервированы монтажные отверстия по краям платы под винты 2.5 мм.
Микросхему усилителя необходимо установить на теплоотвод (в набор не входит) площадью не менее 600 см2. В качестве радиатора можно использовать металлический корпус или шасси устройства, в которое производится установка УНЧ. При монтаже рекомендуется использовать теплопроводную пасту типа КТП-8, для повышения надежности работы ИМС.

Использование SW1 в BM2033

Для "мягкого" выключения звука используется нога 10 (MUTE) микросхемы.
Для "мягкого" выключения усилителя в Дежурный Режим используется нога 9 (STAND-BY) микросхемы.
В данном исполнении в усилителе используется одновременное управление двумя режимами (MUTE и STAND-BY).
SW1 разомкнут - звук включен, усилитель включен
SW1 замкнут - MUTE - без звука, STAND-BY - режим ожидания
Усилитель работает, когда напряжение на ноге 9 и на ноге 10 больше + 3,5 вольт. Такие уровни позволяют управлять усилителем от обычных цифровых микросхем.
Если напряжение на соответствующем выводе меньше, чем +1,5 вольта относительно земли (на самом деле относительно вывода 1, соединенного с землей), то режим включен - микросхема молчит, или вообще отключена. Если напряжение больше +3,5 В, то режим отключен.

Порядок настройки BM2033

Правильно собранный УНЧ не требует настройки. Однако перед его использованием необходимо проделать несколько операций:
1. Проверьте правильность подключения источника сигнала, нагрузки и управляющих сигналов MUTE/ST-BY (при отказе использования штатного переключателя SW1).
2. Подайте напряжение питания, полезный сигнал, а затем замкните SW1 для запуска микросхемы.
Блок настроен и полностью готов к эксплуатации.

Назначение клемных контактов ВМ2033

Х1 - Вход. Сюда подайте сигнал от предварительного усилителя, выхода AUX магнитолы.
Х2 - GND (общий). На Х1,Х2 подайте усиливаемый сигнал.
Х3 - Подключите красный положительный провод питания +48В
Х4 - GND (общий). Подключите зеленый провод питания (средняя точка соединения однополярных источников питания).
Х5 - Положительный выход "+" на динамик.
Х6 - Отрицательный выход "-" на динамик. Внимание: это не -48В (не минус двуполярного питания!) К Х5,Х6 подключите динамик.
Х7 - Подключите черный отрицательный провод питания -48В.

Схема монтажная BM2033
Схема электрическая принципиальная BM2033
Схема подключений BM2033 после темброблока ВМ2111
Использование BM2033 совместно с NM1025
Информация о требуемом двуполярном источнике питания для BM2033

В качестве стереоусилителя мы не рекомендуем использовать очень мощные схемы, требующие двуполярного питания по причине отсутсвия в наличии источников двуполярного питания. Если Вы приняли решение купить мощный усилитель BM2033 (1 x 100 Вт) или BM2042 (1 x 140 Вт) , то это значит, что Вы готовы к покупке мощного блока питания, стоимость которого может превышать стоимость самого усилителя в несколько раз .
В качестве источника питания можно использовать IN3000S (+6...15В/3А) , либо IN5000S (+6...15В/5А) , либо PS-65-12 (+12В/5,2А) , либо PW1240UPS (+12В/4А) , либо PW1210PPS (+12В/10,5А) , либо LPS-100-13.5 (+13,5V/7,5A) , либо LPP-150-13.5 (+13,5В/11,2А) .
Усилители BM2033 (1 x 100 Вт) и BM2042 (1 x 140 Вт) требуют двуполярного источника питания , которое, к сожалению, в готовом виде у нас отсутствует. Как вариант, его можно обеспечить последовательно соединенными однополярными источниками питания из перечисленных выше источников. В этом случае стоимость источника питания возрастает в два раза .

Как ни странно, но у многих пользователей проблемы начинаются уже при покупке источника двуполярного питания либо самостоятельного его изготовления. При этом часто допускают две самые распространенные ошибки:
- Используют источник однополярного питания
- При покупке или изготовлении принимают во внимание действующее значение напряжения вторичной обмотки трансформатора , которое написано на корпусе трансформатора и которое показывает вольтметр при измерении.


Описание схемы источника двуполярного питания для BM2033

1.1 Трансформатор - должен иметь ДВЕ ВТОРИЧНЫЕ ОБМОТКИ . Либо одна вторичная обмотка с отводом от средней точки (встречается очень редко). Итак, если у вас трансформатор с двумя вторичными обмотками, то их необходимо соединить как показано на схеме. Т.е. начало одной обмотки с концом другой (начало обмотки обозначается черной точкой, на схеме это показано). Перепутаете, ничего не будет работать. Когда соединили обе обмотки, проверяем напряжение в точках 1 и 2. Если там напряжение, равное сумме напряжений обеих обмоток, то вы соединили все правильно. Точка соединения двух обмоток и будет "общим" (земля, корпус, GND, называйте как хотите). Это первая распространенная ошибка, как мы видим: обмоток должно быть две, а не одна.
Теперь вторая ошибка: В даташите (тех. описание микросхемы) на микросхему TDA7294 указано: для нагрузки 4Ома рекомендуется питание +/-27. Ошибка в том, что люди часто берут трансформатор с двумя обмотками 27В, ЭТОГО ДЕЛАТЬ НЕЛЬЗЯ!!! Когда вы покупаете трансформатор, на нем пишут действующее значение , и вольтметр вам тоже показывает действующее значение. После того, как напряжение выпрямляется, им заряжаются конденсаторы. А заряжаются они уже до амплитудного значения которое в 1.41 (корень из 2ух) раза больше действующего значения. Стало быть, чтобы на микросхеме было напряжение 27В, то обмотки трансформатора должны быть на 20В (27 / 1,41 = 19,14 Т.к. на такое напряжение трансформаторы не делают, то возьмем ближайшее: 20В). Суть думаю ясна.
Теперь о мощности: для того, чтобы TDA выдала свои 70Вт, ей необходим трансформатор мощностью минимум 106Вт (КПД у микросхемы 66%), желательно больше. Например для стерео усилителя на TDA7294 очень хорошо подойдет трансформатор мощностью 250Вт

1.2 Выпрямительный мостик - Тут как правило вопросов не возникает, но все же. Я лично предпочитаю ставить выпрямительные мосты, т.к. не надо возиться с 4мя диодами, так удобнее. Мостик должен обладать следующими характеристиками: обратное напряжение 100В, прямой ток 20А. Ставим такой мостик и не паримся, что в один "прекрасный" день он сгорит. Такого мостика хватает на две микросхемы и емкость конденсаторов в БП 60"000мкФ (когда конденсаторы заряжаются, через мостик проходит очень высокий ток)

1.3 Конденсаторы - Как видно, в схеме БП используется 2 типа конденсаторов: полярные (электролитические) и неполярные (пленочные). Неполярные (С2, С3) необходимы для подавления ВЧ помех. По емкости ставьте что будет: от 0,33мкФ до 4мкФ. Желательно ставить наши К73-17, довольно неплохие конденсаторы. Полярные (С4-С7) необходимы для подавления пульсации напряжения, да и к тому же отдают свою энергию при пиках нагрузки усилителя (когда трансформатор не может обеспечить требуемый ток). По емкости до сих пор люди спорят, сколько все таки нужно. Я на опыте понял, что на одну микросхему, достаточно 10000 мкФ в плечо. Напряжение конденсаторов: выбирайте сами, в зависимости от питания. Если у вас трансформатор на 20В, то выпрямленное напряжение будет 28,2В (20 х 1,41 = 28,2), конденсаторы можно поставить на 35В. С неполярными то же самое. Вроде бы ничего не упустил...
В итоге у нас получился БП содержащий 3 клеммы: "+" , "-" и "общий" С БП закончили, переходим к микросхеме.

2) Микросхемы TDA7294 и TDA7293

2.1.1 Описание выводов микросхемы TDA7294
1 - Сигнальная земля


4 - Тоже сигнальная земля
5 - Вывод не используется, можете его смело отламывать (главное не перепутайте!!!)

7 - "+" питания
8 - "-" питания


11 - Не используется
12 - Не используется
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.1.2 Описание выводов микросхемы TDA7293
1 - Сигнальная земля
2 - Инверсный вход микросхемы (в стандартной схеме сюда подключается ОС)
3 - Неинверсный вход микросхемы, сюда подаем аудиосигнал, через разделительный конденсатор С1
4 - Тоже сигнальная земля
5 - Клиппметр, в принципе абсолютно ненужная функция
6 - Вольтодобавка (Bootstrap)
7 - "+" питания
8 - "-" питания
9 - Вывод St-By. Предназначен для перевода микросхемы в дежурный режим (т.е. грубо говоря усилительная часть микросхемы отключается от питания)
10 - Вывод Mute. Предназначен для ослабления входного сигнала (грубо говоря, отключается вход микросхемы)
11 - Вход оконечного каскада усиления (используется при каскадировании микросхем TDA7293)
12 - Сюда подключается конденсатор ПОС (С5) когда напряжение питания превышает +/-40В
13 - "+" питания
14 - Выход микросхемы
15 - "-" питания

2.2 Разница между микросхемами TDA7293 и TDA7294
Такие вопросы встречаются постоянно, итак, вот основные отличия TDA7293:
- Возможность параллельного включения (фигня полная, нужен мощный усилитель - собирайте на транзисторах и будет вам счастье)
- Повышенная мощность (на пару десятков ватт)
- Повышенное напряжение питания (иначе предыдущий пункт был бы не актуален)
- Еще вроде говорят что она вся сделана на полевых транзисторах (а толку то?)
Вот вроде бы все отличия, от себя лишь добавлю что у всех TDA7293 наблюдается повышенная глючность - слишком часто горят.

Часто задаваемые вопросы по BM2033

- Как подключить светодиод для контроля пуска усилителя ВМ2033?
- Светодиод следует подключить параллельно любому плечу источника питания. Не забудьте установить последовательно светодиоду токоограничивающий R=1 кОм.

ВМ2033 - просто сказка! Заменил им сгоревший канал в старом "Cтарт 7235". Качает раза в 1,5-2 мощнее прежнего, при том что греется меньше. Сейчас хочу им же заменить оконечники в "Вега122". Огорчила только одна мелочь - из-за своей невнимательности прикрутил микросхему напрямую к радиатору. В результате - пришлось перепаивать саму микросхему и востанавливать перегоревшую дорожку.

Казалось бы что может быть проще, подключить усилитель к блоку питания , и можно наслаждаться любимой музыкой?

Однако, если вспомнить, что усилитель по сути модулирует по закону входного сигнала напряжение источника питания, то станет ясно, что к вопросам проектирования и монтажа блока питания стоит подходить очень ответственно.

Иначе ошибки и просчёты допущенные при этом могут испортить (в плане звука) любой, даже самый качественный и дорогой усилитель.

Стабилизатор или фильтр?

Удивительно, но чаще всего для питания усилителей мощности используются простые схемы с трансформатором, выпрямителем и сглаживающим конденсатором. Хотя в большинстве электронных устройств сегодня используются стабилизированные блоки питания. Причина этого заключается в том, что дешевле и проще спроектировать усилитель, который бы имел высокий коэффициент подавления пульсаций по цепям питания, чем сделать относительно мощный стабилизатор. Сегодня уровень подавления пульсаций типового усилителя составляет порядка 60дБ для частоты 100Hz , что практически соответствует параметрам стабилизатора напряжения. Использование в усилительных каскадах источников постоянного тока, дифференциальных каскадов, раздельных фильтров в цепях питания каскадов и других схемотехнических приёмов позволяет достичь и ещё больших значений.

Питание выходных каскадов чаще всего делается нестабилизированным. Благодаря наличию в них 100% отрицательной обратной связи, единичному коэффициенту усиления, наличию ОООС, предотвращается проникновение на выход фона и пульсаций питающего напряжения.

Выходной каскад усилителя по сути является регулятором напряжения (питания), пока не войдет в режим клиппирования (ограничения). Тогда пульсации питающего напряжения (частотой 100 Гц) модулируют выходной сигнал, что звучит просто ужасно:

Если для усилителей с однополярным питанием происходит модуляция только верхней полуволны сигнала, то у усилителей с двухполярным питанием модулируются обе полуволны сигнала. Большинству усилителей свойственен этот эффект при больших сигналах (мощностях), но он никак не отражается в технических характеристиках. В хорошо спроектированном усилителе эффекта клиппирования не должно происходить.

Чтобы проверить свой усилитель (точнее блок питания своего усилителя), вы можете провести эксперимент. Подайте на вход усилителя сигнал частотой чуть выше слышимой вами. В моём случае достаточно 15 кГц:(. Повышайте амплитуду входного сигнала, пока усилитель не войдёт в клиппинг. В этом случае вы услышите в динамиках гул (100Гц). По его уровню можно оценить качество блока питания усилителя.

Предупреждение! Обязательно перед этим экспериментом отключите твиттер вышей акустической системы иначе он может выйти из строя.

Стабилизированный источник питания позволяет избежать этого эффекта и приводит к снижению искажений при длительных перегрузках. Однако, с учётом нестабильности напряжения сети, потери мощности на самом стабилизаторе составляют примерно 20%.

Другой способ ослабить эффект клиппирования это питание каскадов через отдельные RC-фильтры, что тоже несколько снижает мощность.

В серийной технике такое редко применяется, так как помимо снижения мощности, увеличивается ещё и стоимость изделия. Кроме того, применение стабилизатора в усилителях класса АВ может приводить к возбуждению усилителя из-за резонанса петель обратной связи усилителя и стабилизатора.

Потери мощности можно существенно сократить, если использовать современные импульсные блоки питания. Тем не менее, здесь всплывают другие проблемы: низкая надёжность (количество элементов в таком блоке питания существенно больше), высокая стоимость (при единичном и мелко-серийном производстве), высокий уровень ВЧ-помех.

Типовая схема блока питания для усилителя с выходной мощностью 50Вт представлена на рисунке:

Выходное напряжение за счёт сглаживающих конденсаторов больше выходного напряжения трансформатора примерно в 1,4 раза.

Пиковая мощность

Несмотря на указанные недостатки, при питании усилителя от нестабилизированного источника можно получить некоторый бонус — кратковременную (пиковую) мощность выше, чем мощность блока питания, за счёт большой ёмкости фильтрующих конденсаторов. Опыт показывает, что требуется минимум 2000мкФ на каждые 10Вт выходной мощности. За счёт этого эффекта можно сэкономить на трансформаторе питания — можно использовать менее мощный и, соответственно, дешёвый трансформатор. Имейте ввиду, что измерения на стационарном сигнале этого эффекта не выявят, он проявляется только при кратковременных пиках, то есть при прослушивании музыки.

Стабилизированный блок питания такого эффекта не даёт.

Параллельный или последовательный стабилизатор?

Бытует мнение, что параллельные стабилизаторы лучше в аудиоустройствах, так как контур тока замыкается в локальной петле нагрузка-стабилизатор (исключается источник питания), как показано на рисунке:

Тот же эффект дает установка разделительного конденсатора на выходе. Но в этом случае ограничивает нижняя частота усиливаемого сигнала.


Защитные резисторы

Каждому радиолюбителю наверняка знаком запах горелого резистора. Это запах горящего лака, эпоксидной смолы и... денег. Между тем, дешёвый резистор может спасти ваш усилитель!

Автор при первом включении усилителя в цепях питания вместо предохранителей устанавливает низкоомные (47-100 Ом) резисторы, которые в несколько раз дешевле предохранителей. Это не раз спасало дорогие элементы усилителя от ошибок в монтаже, неправильно выставленного тока покоя (регулятор поставили на максимум вместо минимума), перепутанной полярности питания и так далее.

На фото показан усилитель, где монтажник перепутал транзисторы TIP3055 с TIP2955.

Транзисторы в итоге не пострадали. Все закончилось хорошо, но не для резисторов, и комнату проветривать пришлось.

Главное — падение напряжения

При проектировании печатных плат блоков питания и не только не надо забывать, что медь не является сверхпроводником. Особенно это важно для «земляных» (общих) проводников. Если они тонкие и образуют замкнутые контуры или длинные цепи, то в из-за протекающего тока на них получается падение напряжения и потенциал в разных точках оказывается разным.

Для минимизации разности потенциалов принято общий провод (землю) разводить в виде звезды — когда к каждому потребителю идёт свой проводник. Не стоит термин «звезда» понимать буквально. На фото показан пример такой правильной разводки общего провода:


В ламповых усилителях сопротивление анодной нагрузки каскадов довольно высокое, порядка 4кОм и выше, а токи не очень велики, поэтому сопротивление проводников не играет существенной роли. В транзисторных усилителях сопротивления каскадов существенно ниже (нагрузка вообще имеет сопротивление 4Ом), а токи гораздо выше, чем в ламповых усилителях. Поэтому влияние проводников тут может быть весьма существенным.

Сопротивление дорожки на печатной плате в шесть раз выше, чем сопротивление отрезка медного провода такой же длинны. Диаметр взят 0,71мм, это типичный провод, который используется при монтаже ламповых усилителей.

0.036 Ом в отличие от 0.0064 Ом! Учитывая, что токи в выходных каскадах транзисторных усилителей могут в тысячу раз превышать ток в ламповом усилителе, получаем, что падение напряжения на проводниках может быть в 6000! раз больше. Возможно, это одна из причин, почему транзисторные усилители звучат хуже ламповых. Это также объясняет, почему собранные на печатных платах ламповые усилители часто звучат хуже прототипа, собранного навесным монтажом.

Не стоит забывать закон Ома! Для снижения сопротивления печатных проводников можно использовать разные приёмы. Например, покрыть дорожку толстым слоем олова или припаять вдоль дорожки лужёную толстую проволоку. Варианты показаны на фото:

Импульсы заряда

Для предотвращения проникновения фона сети в усилитель нужно принять меры от проникновения импульсов заряда фильтрующих конденсаторов в усилитель. Для этого дорожки от выпрямителя должны идти непосредственно на конденсаторы фильтра. По ним циркулируют мощные импульсы зарядного тока, поэтому ничего другого к ним подключать нельзя. цепи питания усилителя должны подключаться к выводам конденсаторов фильтра.

Правильное подключение (монтаж) блока питания для усилителя с однополярным питанием показан на рисунке:

Увеличение по клику

На рисунке показан вариант печатной платы:

Пульсации

Большинство нестабилизированных источников питания имеют после выпрямителя только один сглаживающий конденсатор (или несколько включенных параллельно). Для улучшения качества питания можно использовать простой трюк: разбить одну ёмкость на две, а между ними включить резистор небольшого номинала 0,2-1 Ом. При этом даже две ёмкости меньшего номинала могут оказаться дешевле одной большой.

Это дает более плавные пульсации выходного напряжения с меньшим уровнем гармоник:


При больших токах падение напряжения на резисторе может стать существенным. Для его ограничения до 0,7В параллельно резистору можно включить мощный диод. В этом случае, правда, на пиках сигнала, когда диод будет открываться, пульсации выходного напряжения опять станут «жесткими».

Продолжение следует...

Статья подготовлена по материалам журнала «Практическая электроника каждый день»

Вольный перевод: Главного редактора «РадиоГазеты»

В этом разделе предложены некоторые варианты реализации ПП блоков питания для усилителей. Схему БП с разделением батареи конденсаторов резисторами сопротивлением в пределах 0.15-0.47 Ом было предложено Л.Зуевым:

Разводка платы БП УНЧ Владимиром Лепехиным в формате lay

Для УНЧ Натали были разведены платы под электролитические конденсаторы диаметр посадки d=30, 35 и 40 мм с выводами snap-in

Схема со стабилизированным питанием для УН-а и операционного усилителя на м/с M5230L

Для проекта усилитель ASR на MOSFET с токовой ОООС от Maxim_A (Андрей Константинович), В.Лепехин развел платы под маломощный БП для УН-а усилителя и мощный БП для выходного каскада.

плата БП маломощный top

плата БП маломощный bottom

плата БП УНЧ top

плата БП УНЧ bottom

Для в реализации двойное моно будут использованы БП на таких ПП:

БП УНЧ V2012ЭА

Этот БП используется для питания ВК (выходного каскада). На плате можно устанавливать электролиты с креплением Snap-in диаметром до 30 мм, предусмотрена посадка под диоды в корпусах ТО220-3 и ТО220-2, что расширяет номенклатуру применяемых диодов. Габариты ПП 66 х 88 мм.

Для питания УН-а при раздельном питании, будет использована такая плата БП:

БП УНЧ V2012ЭА

Габариты ПП 66 х 52 мм. Посадка диодов универсальная можно поставить выводные и в корпусе ТО220-2, посадка электролитов диаметром до 25 мм.