Подъемный кран своими руками. Лебедка своими руками – простые способы изготовления Самодельные подъемники грузов

За всю долгую историю своего существования человек не раз сталкивался с задачей поднятия и перемещения в пространстве тяжёлых предметов. Например, знакомые всем египетские пирамиды состоят из массивных каменных блоков, которые не под силу поднять никому. Поэтому одним из величайших достижений человечества является изобретение грузоподъёмного крана, который позволил существенно упростить задачу по перемещению тяжёлых грузов и ускорить строительство домов и других объектов.

Устройство машины

В основе принципа работы подъёмного крана лежит физика простых механизмов. Самый простой вариант крана представляет собой палку, расположенную на точке опоры таким образом, что свободные концы имеют разную длину. Теперь если к короткому рычагу подвесить груз, то для его поднятия потребуется меньше усилий. Наиболее распространена конструкция, в которой используется помимо рычагов ещё и система блоков.

Подъёмный кран, собранный своими руками, является неоспоримым помощником в малом строительстве. При возведении частного дома не требуется использования громоздких промышленных кранов. Высота домов редко превышает 2-х этажей, а вес поднимаемого груза 200 килограмм.

Несмотря на то что существует множество вариаций подъёмных механизмов, классический подъёмный кран состоит из следующих частей:

  • Стрела, с закреплённым на её конце блоком. В зависимости от её длины, определяется высота, на которую можно поднять груз.
  • Платформа. К ней крепится стрела и противовес. Является основной частью крана и подвергается значительным нагрузкам. Поэтому при изготовлении платформы, важно особое внимание уделять её прочности.
  • Противовес. Служит для устойчивости крана. Определяет максимальный вес груза, который кран может поднять. Существуют варианты наборных противовесов для обеспечения максимальной устойчивости.
  • Растяжка, соединяющая стрелу и противовес. Позволяет регулировать наклон стрелы и перемещать груз как в вертикальной, так и в горизонтальной плоскости.
  • Лебёдка с тросом. Является самим подъёмным механизмом. От мощности лебёдки зависит то, какой вес способен поднять кран.
  • Стойка с поворотным механизмом. Она необходима для поворота крана в стороны.
  • Опорный крест, который является основанием крана. Задаёт устойчивость всей конструкции. При его изготовлении также следует уделять внимание его прочности.

Условия эксплуатации

Для безопасной эксплуатации подъёмных механизмов, следует придерживаться определённых правил.

Эти правила касаются любого подъёмного устройства:

  • Недопустимо превышать грузоподъёмность. Слишком тяжёлый груз может повредить устройство.
  • Основание должно быть устойчиво. Самодельные подъёмные устройства должны располагаться на заранее подготовленной твёрдой горизонтальной поверхности.
  • При плохих погодных условиях также следует воздержаться от работы с краном. Сильный ветер выведет кран из равновесия, а плохая видимость может помешать заметить людей под стрелой.
  • Перед тем как эксплуатировать кран или подъёмное устройство, необходимо провести внешний осмотр на предмет выявления неисправностей. При обнаружении неисправностей запрещается эксплуатация крана.
  • Следует помнить, что при работе с подъёмником не стоит делать резких движений. Груз необходимо поднимать плавно. И самое главное – ни в коем случае не стоять под поднимаемым грузом.

Какими характеристиками должен обладать гаражный подъёмник

В гаражных условиях используются два типа подъёмных механизма. К первому типу относят подъёмник, способный поднять автомобиль целиком, а ко второму относят подъёмник типа гусь, позволяющий перемещать грузы по гаражу.

Подъёмники первого типа являются стационарными устройствами и главное требование, которое предъявляется к ним – устойчивость. Автомобиль весит более тонны и не должен иметь ни малейшего шанса на падение. Для того чтобы исключить какие-либо несчастные случаи, гаражный подъёмник должен иметь надёжный стопор.

Наиболее часто в автомастерских используют подъёмники типа «гусь». Его достаточно просто изготовить из профильной трубы или швеллера. Сначала варится основание, на которое нужно установить поворотный механизм. Стрелу лучше всего изготовить с регулируемым вылетом. Так появится возможность перемещать тяжести в любом направлении.

Как работает простая конструкция блоков

Система блоков или полиспаст известна человечеству с древнейших времён. Классическая конструкция системы состоит из шкивов и троса. Один шкив называют блоком. В зависимости от способа крепления шкив может быть подвижным и неподвижным:

  • Неподвижный блок. Крепится к опоре и играет роль изменения направления движения каната. Не даёт никакого выигрыша в силе.
  • Подвижный блок. Располагается на стороне груза и даёт выигрыш в силе.

Принцип работы полиспаста схож с принципом работы рычага в физике простых механизмов. Роль рычага в этом случае играет сам трос. В случае простого блока из двух шкивов, подвижный шкив делит верёвку на 2 части и для того, чтобы поднять груз на то же расстояние, потребуется канат в 2 раза длиннее. Работа по поднятию груза выполняется в том же объёме. А усилие, из-за того, что длина верёвки стала в два раза больше, становится в два раза меньше.

В случае если в системе более 2-х шкивов, выигрыш в силе примерно равен количеству блоков. В случае 3-х блоков, усилие будет в 3 раза меньше, а 4 блока потребуют лишь четверть от первоначального усилия.

Сложная система блоков как рассчитать выигрыш в силе

Если система устроена так, что один простой полиспаст тянет собой другой простой полиспаст, то это уже сложная система блоков. Для теоретического расчёта выигрыша в силе, необходимо условно разделить сложный полиспаст на простые и перемножить значения выигрыша от простых полиспастов.

Например, если система состоит из 4 блоков, и первый условный простой полиспаст имеет выигрыш в силе 3. Он тянет за собой второй простой двухблочный полиспаст тоже с выигрышем в 3. Суммарно усилие, которое потребуется приложить будет в 9 раз меньше. Именно 4-х блочный сложный полиспаст наиболее часто используется спасателями.

Способы крепления верёвки к грузоподъёмному механизму

При создании комплексных полиспастов, нередко бывают ситуации, когда троса необходимой длины для крепления подвижного блока не оказывается под рукой.

Способы крепления троса с помощью такелажа общего назначения:

  • С использованием репшнура. С помощью самозатягивающегося узла репшнур привязывается к основному тросу. По мере поднятия груза, схватывающийся узел передвигается по основной верёвке, позволяя тем самым увеличить высоту подъёма груза.
  • С использованием зажимов. В случае использования стального троса – использовать репшнур не представляется возможным, поэтому необходимо использовать специальные зажимы.

Создаём простейший подъёмный механизм своими руками

Строительство подъёмного крана небыстрая задача и оправдана в том случае, если он будет требоваться часто или объем работы достаточно велик. В тех случаях, когда груз нужно поднять срочно или это разовая операция, то можно воспользоваться подручными средствами.

Для создания простейшего подъёмного устройства потребуется шнур, и два блока. Один блок и конец верёвки закрепляется неподвижно на опоре. Это будет самая высокая точка, до которой можно поднять груз. Второй блок крепим на груз с помощью строп или крюка. Верёвку протягиваем сначала по блоку, закреплённому на грузе, затем пропускаем через верхний блок. Выигрыш в силе при этом будет в 2 раза. Используя собственный вес можно легко поднять груз весом в 100 килограмм на необходимую высоту.

Если добавить возможность перемещения верхнего блока по направляющей, например по рельсе, то можно получить консольный кран, сделанный своими руками. Он пригодится в гаражных условиях для перемещения тяжёлых частей машин.

Следует помнить, что при работе с подъёмником не стоит делать резких движений. Груз необходимо поднимать плавно. И самое главное – ни в коем случае не стоять под поднимаемым грузом. Это же правило относится к подъёмному крану – стоять под стрелкой запрещено.

Материалы и инструменты

Самое главное, при изготовлении подъёмного крана, это использовать качественный инструмент материалы. Это даст гарантию тому, что конструкция получится крепкой и безопасной.

Трос должен иметь минимальное растяжение, это даст больший выигрыш в силе при использовании системы блоков. Фурнитуру, используемую для обвязки необходимо брать только металлическую. Пластиковая фурнитура не выдерживает сильных нагрузок и ломается в неподходящий момент. В качестве крепежа отдельных частей самодельного крана следует выбирать метизную продукцию повышенной прочности.

Если предполагается использование лебёдки, то её грузоподъёмность не должна быть менее 500 килограмм. Оптимальным выбором будут лебёдки, способные поднять груз весом в 1 тонну и более.

В заключение хочется ещё раз напомнить о необходимости соблюдения техники безопасности при работе с подъёмными механизмами. Также, независимо от того, является ли кран покупным или же сделан своими руками, перед началом работы следует провести его осмотр.

Кровать с подъемным механизмом является оптимальным вариантом для малогабаритных квартир, которая позволяет решить сразу несколько проблем, связанных с благоустройством комнаты. Практичность, надежность и многофункциональность являются основными ее достоинствами. Она может выступать не только в роли спального места, но и выполнять функции комода, для хранения разных вещей и принадлежностей. Изготовить кровать с подъемным механизмом своими руками не так сложно, как может показаться на первый взгляд. При выполнении всех требований, рекомендаций специалистов, кровать получится не хуже заводской. Для того чтобы разобраться как это сделать, необходимо весь процесс разделить на несколько этапов, каждый из которых требует особого внимания.

Особенности таких моделей

Кровати с подъемным устройством имеют ряд особенностей, которые необходимо учитывать при изготовлении ее своими руками:

  • габариты кровати, которые главным образом влияют на прочность подъемного устройства. Чем больше кровать, тем больший вес будет ложиться на механизм. Согласно стандартам размер кровати составляет 2 метра в длину, ширина односпального места - 0,9 м, двуспального - 2 м;
  • кровати с подъемным устройством могут быть одно и двуспальными;
  • крепление механизма может быть горизонтальное или вертикальное;
  • высота кровати влияет на вместительность короба. Если изделие планируется делать на ножках, то короб будет значительно мельче, чем у кровати без них. У изделия без ножек есть еще один немаловажный плюс, это отсутствие под ним пыли;
  • сборка изделия своими руками требует последовательного, ответственного выполнения всех ее этапов, это чертежи, подготовка материалов, изготовление отдельных частей кровати, их сборка. В среднем на изготовление кровати уйдет 1–2 месяца, при условии одновременного выполнения других повседневных обязанностей;
  • выбор материала должен производиться не только из личных предпочтений, но и в зависимости от дизайна комнаты, в которой планируется установка изделия.
Кровать со стальным каркасом Схема каркаса кровати с подъемным механизмом Схема конструкции кровати с подъемным механизмом
Схема сборки кровати

Материалы и инструменты

Любой строительный процесс или изготовление мебели своими руками начинается с составления чертежа, а также подготовки необходимых инструментов и материалов. Выбор материала начинается с основы короба. Самым распространенным и недорогим материалом для изготовления любой мебели являются листы ДСП. Но другие материалы, такие как ОСП, стружечные плиты и другие также можно использовать, все зависит от предпочтений владельца, финансовых возможностей. Далее, подготавливается обивочный материал, выбор которого происходит исключительно из личных предпочтений и дизайна помещения.

Начинка кровати, состоит из поролона, обшивочной ткани. Их размеры и толщина подготавливается согласно составленного чертежа.


Наиболее доступным и недорогим материалом для изготовления кровати является ДСП

Для обработки материала и подготовки его к монтажным работам своими руками потребуется такой инструмент:

  • уровень;
  • рулетка;
  • карандаш или маркер;
  • электролобзик;
  • шуруповерт с разными насадками;
  • болгарка с диском по металлу;
  • сварочный аппарат;
  • строительный фен;
  • планки стальные;
  • мебельный степлер.
Ортопедическое основание
Материалы для основания
Система трансформации лифт

Какой выбрать подъемный механизм

Дизайн современных кроватей позволяет использовать их в разных по размеру комнатах, имея при этом подходящий подъемный механизм, благодаря которому спальное место может откидываться как горизонтально, так и вертикально. Кроме этого, подъемные кровати классифицируются по виду встроенного подъемника. От него зависит простота и удобство использования мебели. Подъемный механизм делится на 3 вида:

  • с ручным подъемом;
  • пружинный;
  • на газовых амортизаторах.
Газлифт Пружинный Ручной

Механизм с ручным подъемом является самым доступным устройством, потому как он не содержит дополнительных приспособлений в виде амортизаторов или пружин. Кровати с таким механизмом в основном используются для взрослых, так как при открытии короба нужно приложить немалые усилия, детям справится с такой нагрузкой не под силу. Но, кроме недостатков, у ручного механизма есть и преимущества - прочность, долговечность.

Пружинный механизм удобен в использовании, но вот срок его эксплуатации составляет от 3 лет до 5, после чего нужно будет полностью его менять. Основная причина поломки, это износ, растягивание пружины. Большим плюсом пружинного механизма является его цена, она сравнительно небольшая, благодаря чему он очень востребован и пользуется спросом.

Газовый амортизатор является самыми удобным, надежным, долговечным механизмом. Работает устройство плавно, бесшумно практически без вмешательства человека. Срок эксплуатации такого механизма составляет от 5 лет до 10, при постоянном его использовании. Выбор амортизатора осуществляется в зависимости от габаритов изделия, веса спального каркаса. Механизм на газовых амортизаторах является дорогим, но в то же время востребованным.

При изготовлении кровати своими руками, подъемное устройство можно купить в мебельных магазинах или заказать по интернету. Можно изготовить своими руками из подходящих материалов. Но при выборе материалов нужно учитывать то, что нагрузка от матраса ложится не только на амортизаторы и планки механизма, а и на места креплений с крепежной фурнитурой.

Крепление механизма происходит в таком порядке:

  • вначале устанавливается верхняя планка устройства, к цокольной части короба, обрешетки спальной плоскости;
  • для ее полного закрепления изготавливается планка из железного уголкового проката;
  • сборка двух последующих планок позволит контролировать высоту подъема решетки с матрасом;
  • крепление нижней опорной планки производится к основному коробу, она необходима для облегчения скольжения шарнирных опор;
  • закончив установку механизма нужно проверить все его крепления.
Газлифт крепится на реечное основание
Механизм на газовых амортизаторах
Установка газовых амортизаторов

Делаем подъемный каркас

Сборка подъемного каркаса своими руками состоит из двух основных этапов, это столярно-плотницкие работы и процесс обработки.

Столярно-плотницкие работы:

  • сборка начинается с подготовки деталей для каркаса, согласно чертежу, в котором указаны все размеры;
  • далее, собирается основа каркаса, это короб из калиброванных досок. Процесс необходимо проводить на полу, для исключения перекосов. Для выравнивания углов необходимо использовать строительный угольник;
  • производится стяжка конструкции при помощи металлических уголков, а для прочности места стыков проклеиваются столярным клеем. Во время крепления нужно обратить внимание на шляпки саморезов, они должны утопать в древесину, но не сильно. Появившиеся места спилов рекомендуется сразу обрабатывать от заусенцев;
  • в случае больших размеров спального места рекомендуется сделать центральную перегородку вдоль каркаса;
  • следующий этап - это крепление реек, которые прикручиваются при помощи саморезов с внутренней стороны боковин, выровняв их по нижнему краю короба. Нужны они для крепления на них ламелей. Размер реек должен быть в пределах 20 на 80 мм;
  • в качестве ламелей выступают те же рейки, только длина их будет соответствовать ширине кровати. Крепление их производится на опорные рейки вдоль каркаса, с шагом не более 15 см. Для ламелей подойдет и фанера, но в этом случае установка центральной перегородки обязательна;
  • на этом столярный процесс окончен и подъемный каркас готов.

Обработка каркаса:

  • этот процесс подразумевает облагораживание деревянных деталей шкуркой или специальной шлиф машинкой и покрытие их лаком;
  • одним из нюансов подготовки каркаса является фанерный лист, который ложится на ламели для равномерного распределения нагрузки. Либо можно произвести укладку ламелей с частотой шага 8–10 см.

Сборка каркаса
Борты кровати крепятся с помощью уголков и саморезов
Готовый каркас кровати

Изготовление основного каркаса

Сборка каркаса, как и всех других составляющих элементов кровати, производится поэтапно. Первым делом для изготовления основного каркаса подготавливаются его составляющие. Дизайн, высота, размер спинок, наличие ножек все эти нюансы отражены в заранее составленном чертеже. Главное требование при изготовлении изделия, это надежность, прочность и качество материала.

Как было сказано выше, материал можно использовать любой, в зависимости от финансовых возможностей и личных предпочтений. Для короба двуспальной стандартной кровати (2000х1800) потребуется: для боковых деталей - две доски длиною 207 см, для торцевых элементов нужны две доски длиной 182 см. Сборка их производятся по тому же принципу, что и подъемный каркас, при помощи саморезов, уголков и клея. В сборочном процессе этот момент является самым ответственным, поэтому перед креплением уголков нужно проверить, чтобы все углы соответствовали 90 градусам. Излишки выступившего клея необходимо сразу же удалить, чтоб в дальнейшем он не доставлял затруднений при обработке каркаса.

При изготовлении больших кроватей своими руками в основном коробе нужно установить ребро жесткости, через продольную ось изделия. В случае, когда дизайн кровати предусматривает ножки, то последним этапом в монтажном процессе является их установка. Самый просто вариант их изготовления, это сборка двух брусков (40х50) с установкой их на глубину двух венцов бруса. Для усиления конструкции можно по центру также установить ножку. Поставив конструкцию в исходное положение можно переходить к ее обработке, зачистить и покрыть лаком.


Крепление реек для фанерного дна
Ножки для кровати
Ножки крепятся внутри каркаса
Вид с наружной стороны
Чтобы не царапался пол на торцы ножек можно приклееть кусочки линолеума

Обшивка изделия

Окончательным этапом в изготовлении кровати с подъемным устройством, это ее дизайнерское оформление, обшивка. В зависимости от дизайна помещения, личных предпочтений владельца, а также банальных финансовых возможностей, обшивку можно произвести при помощи:

  • ткани;
  • кожи;
  • дермантина.

Если изделие выполнялось из качественного дерева можно провести его обработку лакокрасочными средствами.

Для обшивочного процесса потребуется:

  • ткань (или другие выбранные материалы);
  • строительный степлер;
  • листовой поролон.

Обшивка производится основного каркаса и спинки кровати. Для создания небольшого объема и воздушности обивочному материалу, между древесиной и тканью делается прокладка из листового поролона. Строительного степлера вполне достаточно для крепления ткани, его металлические скобы, благодаря пружинному механизму, достаточно сильно вбиваются в древесину, и плотно удерживаю ткань.


Ножки оборачиваются обивочным материалом
Финишная установка ножек
Борты кровати обтягиваются поролоном
Сверху поролон прибивается с напуском примерно 3-4 мм
Обивка кожзамом
Так отделывался борт вокруг ножки
Снизу кожзам подбивался с напуском, без подворота
Углы обивки закрепляются

Делаем изголовье

Изголовье для кровати можно выполнить из того же материала что и все изделие либо использовать обычный лист фанеры. На фанере или другом материале нужно произвести необходимые замеры и вырезать при помощи электролобзика ту форму спинки, которая больше всего нравится. Но нужно иметь в виду, что во время обшивочного процесса легче работать с прямоугольными формами.


Из листа фанеры выпиливается заготовка изголовья
К заготовке крепится деревянный бордюр

Обивка изголовья происходит по тому же принципу что и основной каркас, при помощи строительного степлера, обшивочного материала и листов поролона. С той разницей, что для изголовья обшивка должна быть более воздушной, поэтому между фанерой и материалом прокладывается два листа поролона. В зависимости от дизайна кровати, при помощи поролона и разных видов материала, можно придать уникальный вид изголовью.


Крепление поролона
Второй слой поролона Отделка плотным ватином
Натягиваем ткань Готовое изголовье

Подводя итог, можно сказать, что задумываясь как собрать кровать с подъемным механизмом, не стоит пугаться трудностей, ведь это вполне можно сделать своими руками. Главное условие для получения хорошего результата, это последовательное выполнение всех монтажных этапов, первым из которых является составление чертежа, где обозначены все размеры, количество материала, необходимые инструменты. При соблюдении всех геометрических пропорций кровать получится намного качественнее и надежнее покупного варианта. Материал для ее изготовления выбирается в зависимости от личных предпочтений, финансовых возможностей и дизайна помещения.


Для подъема больших грузов человек не очень силен, но он придумал множество механизмов, которые упрощают этот процесс, и в этой статье мы обсудим полиспасты: назначение и устройство таких систем, а также попытаемся сделать простейший вариант такого приспособления своими руками.

Грузовой полиспаст – это система, состоящая из веревок и блоков, благодаря которой можно выиграть в эффективной силе при потере в длине. Принцип довольно прост. В длине мы проигрываем ровно столько, во сколько раз оказался выигрыш в силе. Благодаря этому золотому правилу механики можно большой массы, не прилагая при этом больших усилий. Что в принципе не так критично. Приведем пример. Вот вы выиграли в силе в 8 раз, при этом вам придется вытянуть веревку длиной в 8 метров, чтобы поднять объект на высоту 1 метр.

Применение таких приспособлений обойдется вам дешевле, чем аренда подъемного крана, к тому же, вы можете сами контролировать выигрыш в силе. У полиспаста есть две разные стороны: одна из них неподвижная, которая крепится на опоре, а другая – подвижная, которая цепляется на самом грузе . Выигрыш в силе происходит благодаря подвижным блокам, которые крепятся на подвижной стороне полиспаста. Неподвижная часть служит только для изменения траектории движения самой веревки.

Виды полиспастов выделяют по сложности, четности и кратности. По сложности есть простые и сложные механизмы, а кратность обозначает умножение силы, то есть, если кратность будет равна 4, то теоретически вы выигрываете в силе в 4 раза. Также редко, но все же применяется скоростной полиспаст, такой вид дает выигрыш в скорости перемещения грузов при совсем малой скорости элементов привода.

Рассмотрим для начала простой монтажный полиспаст. Его можно получить при добавлении блоков на опору и груз. Чтобы получить нечётный механизм, необходимо закрепить конец верёвки на подвижной точке груза, а чтобы получить чётный, то крепим веревку на опоре. При добавлении блока получаем +2 к силе, а подвижная точка дает +1, соответственно. Например, чтобы получить полиспаст для лебедки с кратностью 2, необходимо закрепить конец верёвки на опоре и использовать один блок, который крепится на грузе. И у нас будет чётный вид приспособления.

Принцип работы полиспаста с кратностью 3 выглядит по-другому. Здесь конец веревки крепится на грузе, и используются два ролика, один из них мы крепим на опоре, а другой – на грузе. Такой тип механизма дает выигрыш в силе в 3 раза, это нечётный вариант. Чтобы понять, каков выигрыш в силе получится, можно воспользоваться простым правилом: сколько веревок идет от груза, таков наш выигрыш в силе. Используются обычно полиспасты с крюком, на котором, собственно говоря, и крепится груз, ошибочно думать, что это только блок и веревка.

Теперь узнаем, как работает полиспаст сложного типа. Под этим названием подразумевается механизм, где соединены в одну систему несколько простых вариантов данного грузового устройства, они тянут друг друга. Выигрыш в силе таких конструкций рассчитывается путем перемножения их кратностей. Например, мы тянем один механизм с кратностью 4, а другой с кратностью 2, тогда теоретический выигрыш в силе у нас будет равен 8. Все вышеуказанные расчеты имеют место быть только у идеальных систем, у которых нет силы трения, на практике же дела обстоят иначе.

В каждом из блоков происходит небольшая потеря в мощности из-за трения, так как она еще тратится как раз на преодоление силы трения. Для того чтобы уменьшить трение, необходимо помнить: чем больше у нас радиус перегиба веревки, тем меньше будет сила трения. Лучше всего использовать ролики с большим радиусом там, где это возможно. При использовании карабинов следует делать блок из одинаковых вариантов, но ролики гораздо эффективнее карабинов, так как на них у нас потеря составляет 5-30 %, а вот на карабинах же до 50 %. Также не лишним будет знать, что наиболее эффективный блок необходимо располагать ближе к грузу для получения максимального эффекта.

Как же нам рассчитать реальный выигрыш в силе? Для этого нам необходимо знать КПД применяемых блоков. КПД выражается числами от 0 до 1, и если мы используем веревку большого диаметра или слишком жесткую, то эффективность от блоков будет значительно ниже, чем указана производителем. А значит, необходимо это учесть и скорректировать КПД блоков. Чтобы рассчитать реальный выигрыш в силе простого типа грузоподъемного механизма, необходимо рассчитать нагрузку на каждую ветвь веревки и сложить их. Для расчета выигрыша в силе сложных типов необходимо перемножить реальные силы простых, из которых он состоит.

Не стоит забывать еще и о трении веревки, так как ветви ее могут перекручиваться между собой, а ролики от больших нагрузок могут сходиться и зажимать веревку. Дабы этого не происходило, следует разнести блоки относительно друг друга, например, можно между ними использовать монтажную плату. Следует также приобретать только статические веревки, не растягивающиеся, так как динамические дают серьёзный проигрыш в силе. Для сбора механизма может использоваться как отдельная, так и грузовая веревка, присоединенная к грузу независимо от подъемного устройства.

Преимущества использования отдельной веревки состоит в том, что вы можете быстро собрать или приготовить заранее грузоподъемную конструкцию. Вы также можете использовать всю ее длину, это также облегчает проход узлов. Из минусов можно упомянуть то, что нет возможности автоматической фиксации поднимаемого груза. Преимущества грузовой веревки в том, что возможна автофиксация поднимаемого объекта, и нет необходимости в отдельной веревке. Из минусов важно то, что при работе сложно проходить узлы, а также приходится затрачивать грузовую веревку на сам механизм.

Поговорим об обратном ходе, который неизбежен, так как он может возникнуть при прихватывании веревки, или же в момент снятия груза, или при остановке на отдых. Чтобы обратного хода не возникало, необходимо использовать блоки, которые пропускают веревку только в одну сторону. При этом организовываем конструкцию так, что блокирующий ролик крепится первым от поднимаемого объекта. Благодаря этому, мы не только избегаем обратного хода, но также позволяем закрепить груз на время разгрузки или же просто перестановки блоков.

Если вы используете отдельную веревку, то блокирующий ролик крепится последним от поднимаемого груза, при этом фиксирующий ролик должен обладать высокой эффективностью.

Теперь немного о креплении грузоподъемного механизма к грузовой веревке. Редко, когда у нас под рукой находится веревка нужной длины, чтобы закрепить подвижную часть блока. Вот несколько видов крепления механизма. Первый способ – с помощью схватывающих узлов, которые вяжутся из репшнуров диаметром 7-8 мм, в 3-5 оборотов. Данный способ, как показала практика, является наиболее эффективным, так как схватывающий узел из 8 мм шнура на веревке диаметром 11 мм начинает сползать только при нагрузке 10-13 кН. При этом вначале он не деформирует веревку, а спустя какое-то время, оплавляет оплетку и прикипает к ней, начиная играть роль предохранителя.

Другой способ заключается в использовании зажима общего назначения. Время показало, что его можно использовать на обледенелых и мокрых веревках. Он начинает ползти только при нагрузке в 6-7 кН и несильно травмирует веревку. Еще один способ заключается в использовании персонального зажима, но он является не рекомендуемым, так как он начинает ползти при усилии уже в 4 кН и при этом рвет оплетку, или даже может перекусить веревку. Это все промышленные образцы и их применение, мы же попробуем создать самодельный полиспаст.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПРИРОДООБУСТРОЙСТВА

Кафедра «Мелиоративные и строительные машины»

Доц. Леонтьев Ю.П.

Простейшие грузоподъемные механизмы

Методические указания по выполнению

лабораторной работы для студентов

немеханических специальностей.

Вторая редакция

Москва 2000 г.

    Введение 2

    Цель и задачи работы 2

    Описание лабораторного оборудования,
    измерительных приборов и инструмента 2

      Полиспасты 2

      Лебедка 5

      Домкрат 6

    Порядок выполнения лабораторной работы 8

      Изучение полиспаста 8

      Изучение тали 9

      Изучение лебедки 10

      Изучение винтового домкрата 10

    Контрольные вопросы 11

1. ВВЕДЕНИЕ

Простейшими грузоподъемными механизмами являются полиспасты, тали, лебедки с ручным приводом, домкраты. Применяются эти механизмы при небольших объемах работ и при продолжительных паузах между рабочими операциями. Некоторые из них входят в состав более сложных механизмов строительных машин.

Привод простейших механизмов – ручной.

2. ЦЕПЬ И ЗАДАЧИ РАБОТЫ

Основной целью лабораторной работы является закрепление знаний, полученных на лекциях, а также развития навыков самостоятельной работы при изучении грузоподъемных механизмов. При выполнении работы необходимо изучить конструкцию и принцип действия механизмов, определить опытным способом их основные параметры, ознакомиться с основными расчетными зависимостями.

3. ОПИСАНИЕ ЛАБОРАТОРНОГО ОБОРУДОВАНИЯ,

ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ И ИНСТРУМЕНТА

При измерении усилий применяются пружинные динамометры. Для измерения линейных параметров применяются штангенциркуль, стальная линейка или складной метр.

3.1. Полиспасты.

Полиспаст (рис.1) – это простейшее грузоподъемное устройство, которое состоит из системы подвижных блоков 1, перемещающихся вместе с грузом) и неподвижных 2, соединенных гибким элементом (канатом) 3.

Полиспасты бывают прямого действия и обратного. Большее распространение получили полиспасты прямого действия, которые используют для выигрыша в силе, т.е. для уменьшения тягового усилия. Полиспасты обратного действия применяют для выигрыша в скорости, т.е. для увеличения перемещения.

Полиспасты характеризуются кратностью m , величина которой определяет тяговое усилие. Кратность полиспаста – это количество ветвей каната, на которые распределяется сила тяжести груза Q.

На рис.1 представлены схемы полиспастов прямого действия различной кратности. Так, двухкратный полиспаст (рис.1а), позволяет получить выигрыш тягового усилия в 2 раза, трехкратный (рис. 1б) – в 3 раза, четырехкратный (рис.1в) – в 4 раза.

Полиспасты широко применяются в более сложных грузоподъемных механизмах, например, в талях, входят в состав механизмов строительных машин, например, механизм подъема крана, механизмы управления рабочим оборудованием бульдозеров, скреперов, одноковшовых экскаваторов и др.





3.2. Таль

Талью называется грузоподъемный механизм, предназначенный для подъема грузов на высоту до 3...4 м при выполнении ремонтных, монтажных работ, для обслуживания больших металлорежущих станков и др.

Таль (рис.2) состоит из механической передачи, червячной 1 или зубчатой, тяговой цепи 2, приводного блока 3, цепного полиспаста, состоящего из подвижного блока 4, звездочки 5, расположенной на одном валу с червячным колесом, и грузовой цепи 6; к оси подвижного блока подвешен грузовой крюк 7. Для подвешивания тали к потолочной балке или другому элементу служит верхний крюк 8. Груз поднимается и опускается приложением усилия рабочего к тяговой цели, а удерживается на весу самотормозящей червячной передачей и грузоупорным тормозом.

Выигрыш усилия при подъеме груза талью достигается за счет передаточного числа червячной передачи и кратности цепного полиспаста, а также за счет соотношения диаметров приводного блока 3 и звездочки грузовой цепи 5.

Грузоподъемность талей с ручным приводом может быть от 5 до 100 кН.

3.3. Лебёдка

Лебедка – механизм, предназначенный для подъема, опускания и горизонтального перемещения грузов. Высота подъема определяется длиной каната на барабане лебедки и может составлять несколько десятков метров. Лебёдки могут быть с зубчатыми и червячными передачами.

Лебёдка с зубчатой передачей (рис. 3а) состоит из рамы 1, ведущего вала 2 с рукояткой 3, двухступенчатой зубчатой цилиндрической передачи 4, барабана 5, на который наматывается канат. Каждая лебёдка с ручным приводом снабжена автоматическим грузоупорным тормозом 6 для торможения при опускании груза, а также для обеспечения мгновенной остановки с грузом.

Лебёдка приводится в действие вращением рукоятки 3 в ту или другую сторону, в зависимости от режима работы (подъем или опускание груза). В некоторых случаях для уменьшении усилия рабочего привод лебёдки может осуществляться двумя рукоятками, установленными на ведущем валу 2, при этом необходимо работать одновременно двум рабочим.

Лебёдка с червячной передачей показана на рис.3б. Основные элементы лебёдки: самотормозящая червячная передача I, барабан 2, рукоятка 3. Применение самотормозящей червячной передачи исключает необходимость применения грузоупорного тормоза. Выигрыш усилия при подъеме груза лебёдкой достигается за счет передаточного числа зубчатой или червячной передачи, а также соотношения длины рукоятки и диаметра барабана.

Грузоподъемность лебёдок с ручным приводом может достигать 100 кН.




3.4. Домкрат

Домкрат – это механизм, предназначенный для подъема грузов на небольшую высоту (0,15…1м) при монтажных и ремонтных работах. Применяются несколько типов домкратов: винтовые, реечные, рычажные, гидравлические и др.

Винтовой домкрат (рис.4а) состоит из стального корпуса 1, гайки 2, впрессованной в верхнюю часть корпуса, винта 3. Сверху на винте расположена головка 4, которая может свободно вращаться относительно винта. При подъеме груза производят вращение винта при помощи рычага 5. Для того чтобы исключить самопроизвольное опускание груза необходимо обеспечить самоторможение винтового механизма, для этого угол подъема винтовой линии должен быть меньше угла трения, поэтому КПД винтовых домкратов не превышает 0,45.

Выигрыш усилия в этих домкратах достигается за счет передаточного числа винтовой пары и соотношения величины рычага 5 и диаметра грузового винта 3.

Грузоподъемность винтовых домкратов может быть до 200 кН.

Гидравлический домкрат (рис.4б) имеет следующие основные элементы: поршневой толкатель 1 с цилиндром 2, поршень 3 и цилиндр 4 насоса, камера для рабочей жидкости 5 стенки которой являются корпусом домкрата, клапан 6, рычаг 7 привода насоса. В верхней части толкателя расположена грузовая площадка, посредством которой при подъеме усилие передается грузу.

При подъеме груза приводится в действие насос рычагом 7, жидкость при этом через клапан 6 нагнетается в цилиндр толкателя и поднимает поршень 1. При опускании груза жидкость из рабочего цилиндра необходимо выпустить в камеру 5, через специальный канал, управляемый винтовым золотником 8. Выигрыш усилия в гидравлических домкратах может быть обеспечен за счет соотношения площадей цилиндров насоса и толкателя.

Грузоподъемность гидравлических домкратов достигает 3000 кН.




4. ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

4.1. Изучение полиспаста

1. Изучить конструкцию полиспаста.

2. Начертить схему и дать описание принципа работы.

3. К оси подвижного блока подвесить груз , при помощи динамометра 1 определить усилие в тяговой ветви каната.

4. При помощи динамометра 2 определить усилие в грузовой ветви каната .

5. Повторить последовательно измерения усилий и с грузами

и , Результаты измерений записать в таблицу:

Результаты измерений.

6. Определить кратность полиспаста т :


.

7. Определить КПД полиспаста по результатам трех измерений :


.

8. Найти среднее значение КПД полиспаста:


4.2. Изучение тали.

1. Изучить конструкцию и взаимодействие деталей тали при подъеме и опускании груза.

2. Начертить конструктивную схему, обозначить наименование деталей тали, описать принцип работы.

3. Определить передаточное число механизма привода тали u, для этого, вращая ведущий вал передачи, определить число его оборотов до того момента, как ведомый вал закончит один полный оборот:


.

4. Определить кратность цепного полиспаста m .

5. Измерить диаметр ведущего блока , м.

6. Определить вращающий момент на ведущем валу механизма привода тали [Н·м], приняв усилие в приводной цепи = 200 Н, что вполне допустимо для ручного привода:


.

7. Определить ориентировочно КПД механизма привода тали (пользуясь справочными данными):


,

– соответственно КПД червячной передачи, подшипников, цепного полиспаста, ориентировочно можно принять = 0,65.

8. Определить вращающий момент на ведомом валу тали , Н·м:


9. Определить усилие в грузовой цепи , (Н), приняв диаметр звездочки грузовой цепи

= 0,15 м:


10. Определить величину груза, который можно поднять с помощью тали, приложив усилие к приводной цепи:


4.3. Изучение лебёдки.

1. Изучить конструкцию лебёдки и взаимодействие её деталей при подъеме и опускании груза.

2. Начертить конструктивную схему лебёдки, обозначить наименование деталей, описать принцип работы.

3. Определить передаточное число червячной или зубчатой передачи u, для этого вращая ведущий вал, определить количество оборотов его до того момента, как ведомый вал совершит один полный оборот:

4. Определить ориентировочно КПД передачи (пользуясь справочными данными):


,

где – соответственно КПД передачи (червячной или зубчатой), подшипников и др. элементов.

Для лебёдки с червячной передачей ориентировочно можно принять

0,45.

Для лебёдки с зубчатой передачей – 0,80.

5. Измерить длину рукоятки , м.

6. Определить вращающий момент на рукоятке лебёдки (Н·м), приняв усилие на рукоятке = 200 Н, что вполне допустимо для ручного привода:


7. Определить вращающий момент на барабане лебёдки (Н·м):

Документ

... ηпол. = [η1б.п. + (η1б.п.)2 +……….+ (η1б.п.)(τ-1)] : m 18.3. К.П.Д. простых полиспастов у которых тянущая ветвь, навиваемая... инерции вращающихся и движущихся поступательно масс грузоподъемного механизма и поднимаемого груза. 49. Отклонение...

  • И социальным вопросам секретариат всесоюзного центрального совета профессиональных союзов (4)

    Документ

    простыми грузоподъемными механизмами простыми грузоподъемными механизмами

  • И социальным вопросам секретариат всесоюзного центрального совета профессиональных союзов (11)

    Документ

    Более высокой квалификации. Пользование простыми грузоподъемными механизмами . Должен знать: технологические процессы... и измерительными инструментами; правила пользования простыми грузоподъемными механизмами . Примеры работ 1. Баллоны воздушные, ...

  • Единый тарифно-квалификационный справочник работ и профессий рабочих выпуск 22 раздел " производство и ремонт летательных аппаратов двигателей и их оборудования" введение

    Интернет справочник

    И агрегатов летательных аппаратов при помощи простых грузоподъемных механизмов . Должен знать: технологические процессы сборки...

  • → Cтроительные работы


    Подъемные монтажные приспособления


    При монтаже строительных конструкций, технологического оборудования, трубопроводов в качестве подъемных монтажных приспособлений используют блоки, полиспасты, тали, кошки, тельферы, домкраты, лебедки.


    Рис. 164. Монтажные блоки: а - однорольный; б - трехрольный; 1 - ухо для крепления стального каната; 2 - тяга; 3 - стяжные болты; 4 - щеки; 5 - грузовой крюк; 6 - ролики; 7 - ось; 8 - распорные трубки; 9 - траверса

    Блоки. С помощью монтажных блоков уменьшают силу, необходимую для подъема или перемещения груза (подъемные блоки), а также изменяют направление перемещения каната (отводные блоки). Монтажные блоки различают по числу роликов и грузоподъемности. В зависимости от количества роликов блоки могут быть одно-, двух-, хрехрольными и больше (рис. 164).

    Однорольные блоки изготовляют грузоподъемностью (в кН) 10- 100, двухрольные - 100-200, трехрольные - 150-300, пятирольные - 500-1000.

    Однорольные блоки применяют для непосредственного подъема груза, в полиспастах и в качестве отводных канатов (для изменения направления).

    Многорольные блоки (блочные обоймы) применяют, как правило, в полиспастах.

    Рис. 165. Схемы полиспастов: а - в четыре нитки; б - в шесть ниток; 1 - неподвижные блоки; 2 - канат; 3 - подвижные блоки; 4 - отводной блок

    Полиспасты. Полиспаст представляет собой простейшее грузоподъемное устройство (рис. 165), состоящее из системы подвижных и неподвижных блоков (роликов), огибаемых гибким органом (обычно канатом). Полиспасты применяются как самостоятельные механизмы в сочетании с лебедками и как элементы сложных грузоподъемных машин (кранов).

    Блоки полиспаста размещаются в двух обоймах - подвижной и неподвижной - и последовательно огибаются одним канатом, к свободному концу или обоим концам которого прикладывается тяговое усилие. Неподвижная обойма блоков крепится к несущей конструкции (мачте, стреле, шевру), подвижная снабжается грузозахватным органом (крюком, петлей, скобой).

    Полиспасты используют для выигрыша в силе (реже скорости). Выигрыш в силе тем больше, чем больше кратность полиспаста, равная числу рабочих ветвей каната, на которых подвешена подвижная обойма блоков полиспаста. Следовательно, грузоподъемность полиспаста находится в прямой зависимости от числа рабочих ветвей.

    При выполнении такелажных работ наиболее часто применяют полиспасты с числом ветвей 2-6, со сбегающим с неподвижного блока тяговым канатом.

    Полиспасты с большим числом нитей используют редко, главным образом при подъеме особо тяжелых грузов.

    Полиспасты выпускают грузоподъемностью - 10-500 кН. В отдельных случаях полиспасты изготовляются большей грузоподъемности.

    Тали применяются при погрузочно-разгрузочных работах, для натяжения вант, перемещения груза на небольшие расстояния и высоту (до 3-12 м). По конструкции тали бывают с червячным или шестеренчатым передаточным механизмом.

    Червячная таль (рис. 166) представляет собой комбинацию цепного полиспаста с червячной передачей. Ручная червячная сталь состоит из приводного колеса, связанного с червяком. Через колесо перекинута бесконечная цепь - сварная или пластинчатая.

    Натягивая цепь руками, вращают приводное колесо и тем самым червячную шестерню, соединенную со звездочкой. Через нижний блок тали и звездочку идет грузовая цепь, рабочая часть которой при вращении червячной шестерни со звездочкой сокращается по длине и поднимает груз.

    Тали, как правило, имеют самотормозящуюся червячную передачу, благодаря чему предотвращается самопроизвольное опускание нижнего блока под действием груза. Тали выпускают грузоподъемностью от 10 до 100 кН.

    Рис. 166. Таль с червячной передачей; 1 - звездочка; 2 - приводное колесо; 3 - тяговая цепь; 4 - грузовая цепь; 5 - нижний блок

    Шестеренчатая таль состоит из подвесного корпуса с редуктором, тормозным и приводным механизмами и подвижной блочной обоймой. Корпус тали соединяют с подвижной обоймой грузовой пластинчатой или сварной цепью. Для такелажных работ целесообразно применять тали со сварными грузовыми цепями, так как пластинчатые цепи изгибаются только в одной плоскости, более чувствительны к ударам и легко повреждаются при транспортировании. Грузовая цепная звездочка помещена в корпусе тали и монтируется обычно на подшипниках

    Редуктор имеет шестеренчатую передачу. Тормозной механизм (винтовой дисковый тормоз) помещен на приводном валу. Приводной механизм состоит из тягового колеса (звездочки) и тяговой сварной цепи.

    Кошки - это ручные монорельсовые тележки, предназначенные для перемещения грузов по подвесному однорельсовому пути двутаврового сечения (рис. 167).
    Кошка состоит из двух или четырех ходовых колес, осей, щек, стяжных стержней, регулировочных шайб и грузовой траверсы.


    Рис. 168. Тельфер

    Колеса тележки движутся по полкам нижнего пояса двутавровой балки. Для уменьшения усилия на передвижение ходовые колеса кошки монтируются на подшипниках качения, а ободы колес имеют сферический профиль.

    Кошки могут быть без механизма передвижения или оборудованы специальным механизмом передвижения. Кошки без механизма передвижения перемещаются по рельсу путем толкания подвешенного к ней груза. Для подъема перемещаемого груза к траверсе кошки, как правило, подвешивают ручную таль.

    Тельферы (рис. 168) применяют для облегчения труда рабочих, повышения скорости подъема и передвижения груза. В отличие от ручной тали тельфер имеет механизированный подъем груза и тележку с одним или двумя механизмами передвижения. Тельфер состоит из следующих основных элементов: одной или двух тележек, барабана, электродвигателя, зубчатого редуктора, связывающего электродвигатель с барабаном, грузового блока, стопорного и спускного тормозов.

    Тельферы управляются снизу с помощью шлангового провода и пускового приспособления с кнопками, которое машинист держит в руках, следуя за тельфером при его передвижении. Каждый тельфер должен иметь технический паспорт, в котором указывается его характеристика.

    Домкраты предназначены для подъема конструкций на небольшую высоту. Домкрат устанавливают под грузом и упирают в него выдвижной частью. Подъем груза на высоту, превышающую ход домкрата, производят в несколько приемов. В этих случаях под груз под-кладывают шпальные клетки или применяют ленточные (домкратные) подъемники. Домкраты имеют малую скорость подъема груза.

    Рис. 169. Домкраты: а - реечный; б - винтовой; в - гидравлический; 1 - звездочка; 2-шестерня; 3- головка; 4 - рукоятка; 5 - зубчатая рейка с лапой; 6 - корпус; 7 - гайка; 8 - винт; 9 - золотник; 10 - поршень; 11, 17 - клапаны; 12 - поршневой насос; 13, 14, 16 - рычажное устройство; 15 - камера; 18 - рабочий цилиндр

    По конструкции домкраты разделяют на реечные, винтовые и гидравлические (рис. 169).

    Реечные домкраты изготовляются грузоподъемностью до 100 кН, высотой подъема 0,3-0 4 м и имеют ручной привод.

    Реечный домкрат состоит из корпуса 6, в котором перемещается стальная зубчатая рейка 5. Верхний конец рейки имеет вращающуюся головку 3, на которую опирается груз; нижний конец затянут и образует лапу для подъема низкорасположенных грузов. Грузоподъемность на лапе равна половине основной грузоподъемности домкрата, рейка поднимается и опускается вращением рукоятки привода 4, которая связана с рейкой зубчатыми передачами 2 и/. Для компактности передачи шестерни выполняются как одно целое с валами, количество зубьев минимальное - четыре. Зубья имеют коррегирован-ный профиль. На приводном валу реечного домкрата заделано храповое колесо, а на корпусе шарнирно - собачка, которая, упираясь в зубья храпового колеса, препятствует опусканию рейки. Поднимать груз реечным домкратом с откинутой собачкой запрещается. По правилам Госгортехнадзора для безопасности рукоятка домкрата должна иметь грузоупорный тормоз. Реечные домкраты с машинным приводом в строительстве не применяют.

    Винтовые домкраты изготовляют грузоподъемностью 20-200 кН, высотой подъема 0,25-0,35 м. Они состоят из корпуса 6, винта 8, головки 3, гайки 7 и привода 4.

    Винты домкратов имеют трапецеидальную или упорную - пилообразную резьбу. Угол подъема резьбы винтов домкратов принимают меньше угла трения. Этим обеспечивается самоторможение винта и исключается свободный спуск груза. Головка домкрата, упирающаяся в поднимаемый груз, опирается на верхнюю обработанную по сфере часть винта или непосредственно, или через сферический подпятник. Иногда в головке винтового домкрата устанавливают упорный шарикоподшипник.

    В простых винтовых домкратах приводная рукоятка выполняется в виде цилиндрического стержня, вставляемого в отверстие в верхней части винта. Удобнее вращать винт домкрата рукояткой с храповым механизмом - трещоткой.

    При работе в стесненных условиях и при правке элементов конструкций применяю^ распорные винтовые домкраты грузоподъемностью в 30 кН.

    Кроме винтовых домкратов общего назначения в монтажных грузоподъемных машинах применяют винтовые подъемники с машинным приводом.

    Грузоподъемность таких подъемников достигает 2000 кН, а высота подъема 6,5 м. Так, в приставном башенном кране КП-10 применен винтовой подъемник грузоподъемностью 1100 кН, высотой подъема 6,5 м. С помощью этого механизма производят подъем и опускание башни при монтаже и демонтаже крана.

    Гидравлический домкрат состоит из цилиндра с поршнем (толкателем), насоса и камеры для жидкости. При ручном приводе насоса все узлы домкрата соединяют в один блок.

    В камере находится поршневой насос, приводимый в посту, пательное движение рычажным устройством; жидкость засасывается через клапаны в рабочий цилиндр и производит подъем поршня 10 (груза). Для опускания поршня (груза) имеется канал, соединяющий полость рабочего цилиндра с камерой насоса. Канал перекрывается винтовым спускным золотником (клапаном) 9. Скорость опускания поднятого груза регулируется золотником в широких пределах. Для того чтобы обеспечить уплотнение, на поршне имеется манжета. На корпусе домкрата установлен манометр, показывающий давление жидкости. В качестве рабочей жидкости используют минеральное масло или специальную незамерзающую смесь.

    Гидравлические домкраты при сравнительно небольших габаритах и массе имеют большую грузоподъемность - 500-2000 кН и более, что обеспечивает их широкое применение на установочных операциях при монтаже строительных конструкций. Высота подъема гидравлических домкратов 0,15-0,2 м.


    Рис. 170. Лебедки: а - ручная; б - электрическая ПЛ-5-61 с тяговым усилием 50 кН

    Лебедки широко применяют для подъема и перемещения различных грузов при производстве монтажных и погрузочных работ. Их используют как самостоятельные механизмы или составные части более сложных подъемных машин (кранов, подъемников). По конструкции лебедки бывают с ручным и машинным приводом (рис. 170).

    Лебедки с ручны м приводом применяют в тех случаях, когда операции подъема или перемещения грузов совершаются редко, и скорость процесса не имеет существенного значения.

    По способу установки лебедки с ручным приводом делят на напольные и настенные. Тяговые усилия напольных лебедок - 12,5, 32, 50 и 80 кН; настенных - 2,5 и 5,0 кН.

    Лебедки с ручным приводом состоят из нескольких пар (в зависимости от тягового усилия) цилиндрических зубчатых колес и барабана для наматывания каната. В настенных и специальных лебедках иногда для уменьшения размеров применяют червячные передачи.

    Вращение рукоятки приводного вала лебедки передается через зубчатые колеса к барабану, на который наматывается стальной канат , присоединенный к грузу. Скорость навивки каната на барабан зависит от передаточного числа лебедки, диаметра барабана и плеча рукоятки.

    Обычно передаточное число одной пары зубчатых колес лебедки с ручным приводом не назначается больше 8-9; минимальное число зубьев 10-12. В лебедках с двумя парами и более зубчатых колес для ускорения подъема грузов, масса которых значительно меньше номинальной, скорость изменяют путем переключения зубчатых колес. Переключающие механизмы (переборы) должны предотвращать самопроизвольное осевое перемещение или расцепление зубчатых колес.

    Каждая лебедка с ручным приводом снабжается автоматическим тормозом, обеспечивающим торможение барабана при спуске груза, а также мгновенную остановку его при внезапном освобождении рукоятки. Чаще применяют винтовые тормоза с храповиком. Приводы ручных лебедок с небольшими тяговыми усилиями (5 кН) снабжают безопасными рукоятками. На некоторых лебедках, снабженных храповыми остановами, применяют управляемые ленточные тормоза открытого типа, которыми пользуются при свободном опускании груза для регулирования скорости спуска.

    Лебедки, оборудованные грузоупорными винтовыми тормозами, рассчитаны на определенное направление вращения барабана при наматывании каната. В случае если канат закреплен на барабане так, что направление вращения барабана для его наматывания противоположно направлению, на которое рассчитана лебедка, тормоз лебедки будет бездействовать. Работа лебедкой при таком креплении каната на барабане не допускается.

    Подход каната к барабану лебедок с ручным приводом предусмотрен, как правило, снизу. Чтобы предотвратить перемещение лебедок во время работы, их необходимо закрепить.

    Лебедки с машинным приводом широко применяют при производстве монтажных работ. В качестве приводов на лебедках применяют электродвигатели и реже двигатели внутреннего сгорания. В зависимости от привода лебедки называют электрическими, дизельными, паровыми и пневматическими. По способу передачи вращения от вала двигателя на барабан лебедки разделяются на реверсивные (редукторные), у которых барабан связан с валом двигателя постоянной кинематической связью (зубчатыми колесами редуктора), а груз может спускаться только принудительно (вращением вала двигателя в обратную сторону), и фрикционные, у которых включение барабана на подъем осуществляется с помощью фрикционной муфты включения или разъемной фрикционной передачи. В последнем случае опускание груза производится при барабане, отключенном от привода, и скорость спуска регулируется ленточным тормозом.

    Наиболее распространены реверсивные лебедки, применяемые для оборудования строительно-монтажных кранов и других подъемных устройств. Спуск грузов на таких лебедках производится принудительно (электродвигателем) примерно с той же скоростью, что и подъем. Направление вращения барабана изменяется в зависимости от изменения направления вращения (реверсированием) вала электродвигателя.

    Электролебедки оборудуют автоматически действующими тормозами закрытого типа. Передача вращения от электродвигателя к барабану осуществляется зубчатыми и червячными передачами. Наиболее распространены электролебедки с цилиндрическими зубчатыми передачами - редукторные (рис. 170, б), состоящие из барабана, зубчатого цилиндрического редуктора, соединительной эластичной или зубчато-подвижной муфты с тормозным диском, тормоза закрытого типа, электродвигателя и рамы.

    Барабаны электролебедок изготовляют литыми или сварными. Рабочие поверхности чаще выполняют гладкими с расчетом на многослойную (до пяти слоев) навивку каната, и реже с ручьями, нарезанными по винтовой линии. Гладкие барабаны по концам снабжены ребордами, превышающими последний слой навивки на 1,5-2 диаметра наматываемого каната. Барабаны с ручьями обычно рассчитаны на однослойную навивку каната, поэтому обладают меньшей канатоемко-стью, чем гладкие.

    Крепление каната на барабане осуществляется прижимными или клиновым зажимами. Надежность крепления обеспечивается при условии, что на барабане имеется не менее двух витков каната.

    При назначении расстояния от барабана до ролика, с которого сбегает канат, следует иметь в виду, что для обеспечения правильной навивки каната это расстояние должно быть таким, чтобы тангенс угла между осью каната и плоскостью, перпендикулярной оси барабана, был не более 1: 40 для гладких барабанов и 1: 10 для барабанов с ручьями. Во избежание чрезмерных напряжений от изгиба, возникающих в канате при навивке, диаметр барабана принимают равным не менее 15 диаметров каната.

    К эксплуатации каната допускаются только лебедки, к которым прилагается паспорт завода-изготовителя.


    К атегория:

    Устройство строительных машин

    Подъемно-транспортные механизмы и машины


    Подъемные машины и устройства предназначены для вертикального и в некоторых случаях горизонтального перемещения груза. К ним относятся домкраты, полиспасты, тали, электротали, строительные лебедки, краны-укосины, подъемники, подъемные стационарные и передвижные краны.

    К транспортирующим машинам принадлежат конвейеры, элеваторы, самоходные тележки, которые служат для перемещения грузов в горизонтальном направлении или с некоторым наклоном.

    Вилочные и ковшовые погрузчики, козловые и башенные краны предназначены не только для подъема, но и для перемещения грузов на небольшие расстояния.

    Домкраты -это простейшие грузоподъемные устройства, в которых применен выдвижной толкатель, подводимый под груз и поднимающий его на небольшую высоту.

    По конструкции домкраты бывают винтовыми, реечными, гидравлическими и клиновыми. Винтовые домкраты обладают свойством самоторможения и позволяют устанавливать грузы по высоте с высокой точностью. Винтовой домкрат (рис. 34) с ручным приводом состоит из корпуса, в котором закреплена гайка с ввинченным в нее стальным винтом. Винт оканчивается опорной головкой, воздействующей на груз.

    Через отверстие в винте продета рукоятка для враглщения винта.

    Рис. 34. Винтовой домкрат:
    1 - винт, 2 - корпус, 3 - гайка, 4 - рукоятка, 5 -. опорная головка, 6 - храповое колесо, 7 - собачка

    В стесненных условиях для облегчения вращения винта применяют трещотку, состоящую из устанавливаемого на винт храпового колеса 6 и шарнирно закрепляемой на конце рукоятки двусторонней подпружиненной собачки 7. Грузоподьемость винтовых домкратов до 50 т, высота подъема груза до 0,5-0,6 м, скорость подъема груза 1-5-35 мм/мин и КПД 0,3-0,4.

    Реечные домкраты (рис. 35) применяют для подъема низкорасположенных грузов массой до 6 т. В корпусе домкрата размещен выдвижной толкатель, выполненный в виде стальной зубчатой рейки с прикрепленной к ее нижней части опорной лапой. На верхней части толкателя расположена опорная головка. Толкатель выдвигается с помощью шестерни, приводимой во вращение зубчатой передачей от рукоятки. Для фиксации груза в поднятом положении применяют храповое колесо с собачкой. Высота подъема груза не превышает 0,6 м, а КПД реечных домкратов 0,7-0,8. При работе домкрата лапой его грузоподъемность из-за смещения груза уменьшается в два раза.

    Гидравлический домкрат (рис. 36) представляет собой гидроцилиндр, в котором расположен подводимый под груз поршень. Поршень выдвигается за счет нагнетания в гидроци-Линдр через клапан с помощью рукоятки и плунжера рабочей жидкости, засасываемой из полости через обратный клапан.

    Рис. 35. Реечный домкрат:
    1 - рукоятка, 2 - храповое колесо, S- собачка, 4 - головка, 5 - шестерня, 6 - лапа, 7 -- зубчатая передача, 8 - зубчатая рейка, 9 - корпус

    Рис. 36. Гидравлический домкрат: 1 - гидроцилиндр, 2 -перепускной клапан, 3-манжета, 4 - плунжер, 5 - рукоятка, 6-полость, 7 – обратный клапан, 8 - поршень, 9 - кран

    Для опускания поршня открывается перепускной кран, через который рабочая жидкость поступает обратно в полость 6. Чтобы воспрепятствовать подтеканию рабочей жидкости, плунжер снабжен уплотняющей манжетой.

    Грузоподъемность гидравлических домкратов 750 т и более, высота подъема до 0,4.м, а КПД 0,85-0,9.

    Рис. 37. Схема работы полиспастов:
    и - подъем груза канатом в одну нить, б - подъем груза канатом в две нити, в - подъем груза канатом в четыре нити; 1,2 - неподвижные и подвижные блоки, 3 - лебедка; Q - масса поднимаемого груза

    Клиновой домкрат представляет собой корпус, в котором с помощью винта перемещается клин со встроенной гайкой и поднимает опорную плиту. В связи с небольшой высотой подъема (10-15 мм) эти домкраты применяют для выверки оборудования. Их грузоподъемность до 10 т.

    Полиспасты предназначены для увеличения тягового усилия канатных подъемных устройств путем снижения их скорости. Скорость подъема снижается во столько раз, во сколько увеличивается тяговое усилие. Полиспасты (рис. 37) состоят из одного или группы неподвижных блоков, закрепляемых на опоре; одного или нескольких подвижных блоков, прикрепляемых к грузу; огибающего их каната, один конец которого жестко прикреплен к верхней или нижней обойме полиспаста, а другой конец через отводные ролики направляется на лебедку. При выборе полиспаста следует учитывать, что его грузоподъемность увеличивается по сравнению с тяговым усилием лебедки примерно во столько раз, сколько в нем есть сокращающихся в процессе работы нитей канатов. Для более точного расчета, проводимого для полиспастов с числом подвижных роликов более 6-7, применяют специальные таблицы.

    Грузоподъемность полиспастов достигает 50 т и более. Для ее повышения применяют системы из нескольких сблокированных между собой полиспастов.

    Тали - это грузоподъемные механизмы , смонтированные в одном корпусе с приводом и предназначенные для подъема или подъема и горизонтального перемещения груза.

    Грузоподъемность талей 10 т при высоте подъема до 3 м.

    При подъеме груза натягивают приводную бесконечную цепь и заставляют вращаться приводное колесо, которое в свою очередь через червяк вращает червячное колесо со звездочкой. Через звездочку перекинута грузовая цепь для подъема блока с крюком, к которому подвешивают груз.

    Для придания талям мобильности они могут быть подвешены с помощью оси к тележкам (кошкам), перемещающимся по монорельсам на роликах.

    Электрическая таль (рис. 38) оборудована электродвигателем, приводящим в действие механизм подъема. Электротали бывают стационарные или передвижные, с ручным или электрическим приводом, с продольным и поперечцым расположением подъемного барабана, с ходовыми тележками различной конструкции.

    Рис. 38. Электрическая таль с со-осным расположением электродвигателя:
    1 - токоприемники, 2 - механизм привода ходовых катков, 3 - электродвигатель перемещения электротали, 4 - магнитные пускатели, 5 - грузовой крюк, 6 - панель кнопочного управления двигателями, 7 - грузовой барабан, 8 - электродвигатель подъема и опускания груза, 9 - ходовая тележка, 10 - монорельс

    Электротали применяют в ремонтных цехах, а также на складах и открытых погрузочно-разгрузоч-ных и ремонтных площадках. Грузоподъемность электроталей доходит до 5 т при скорости подъема груза 3-18 м/мин и скорости горизонтального перемещения до 30 м/мин.

    Лебедки (рис. 39) - это грузоподъемные механизмы, в которых тяговое усилие создается путем наматывания каната на барабан В зависимости от рода привода лебедки бывают ручными и механическими, а по способу передачи движения к барабану - шестеренные, червячные, зубчато-фрикционные и редукторные. Тяговое усилие ручной лебедки до 100 МН, канатоемкость барабана до 300 м. Для работы в стесненных условиях применяют ручные рычажные лебедки с тяговым усилием до 30 МН.

    Схема тормозного устройства ручных лебедок показана на рис. 40.

    Зубчато-фрикционная лебедка показана на рис. 41. По конструкции фрикционные муфты лебедок могут быть конусными, ленточными и дисковыми.

    Рис. 39. Лебедки:
    а - с ручным приводом, 6 - ручная рычажная, в - электрическая редук-торная подъемная; 1 - рукоятка, 2 - большое зубчатое колесо, 3 - Стяжной болт, 4 - щекаг 5 - барабан, 6 -храповое колесо с собачкой, 7-протягивающее устройство, 8 - тормозное устройство, 9 - электродвигатель, 10 - металлическая рама, 11- редуктор

    Редукторные лебедки останавливают колодочными фрикционными тормозами, а зубчато-фрикционные - ленточными.

    Для чисто тяговых операций применяют шпилевые лебедки с барабаном вогнутой формы. Тяговое усилие создается за счет действия- сил трения между канатом и шпилем. Тяговое усилие лебедок серии ТЛ составляет 12,5-50 МН при ручном приводе и 3,2- 50 МН при электрическом приводе. Канатоемкость лебедок равна 100-150 м при ручном приводе и 80-250 м при электрическом. Скорость навивки каната у лебедок с электрическим приводом 0,31-0,82 м/с.

    Строительные подъемники - это грузоподъемные машины, предназначенные для подъема и спуска грузов с помощью грузонечущих устройств, перемещающихся по вертикальным или наклонным направляющим. По конструкции направляющих различают подъемники, (рис. 42) с подвесными направляющими и с жесткими направляющими - мачтовые и шахтные.

    Рис. 40. Схема тормозного устройства лебедки:
    1 - собачка, 2 - храповое колесо, 3 - фрикционная накладка, 4 - приводная рукоятка, 5 - ведущие диски тормоза, 6 - ведущее зубчатое колесо

    В подъемниках с подвесными направляющими грузонесущее устройство перемещается вдоль натянутых вертикально направляющих. К недостаткам подъемников этого типа относится возможность раскачки грузонесущего устройства при значительной высоте подъема, а также трудности с установкой консольной опорной рамы на крыше здания.

    Рис. 41. Зубчато-фрикционная лебедка с ременным приводом и одной шестеренной передачей:
    1 - станина, 2 - храповое колесо, 3 - рукоятка включения фрикциона, 4-барабан, 5-приводной шкив

    По конструкции направляющие бывают комбинированными, т. е. состоят из гибких и жестких элементов или шарнирно сочлененных жестких элементов, и гибкими, которые изготовляют из канатов. Направляющие натягивают как за счет массы поднимаемого груза, так и с помощью специальных натяжных устройств. При фиксированном грузонесущем устройстве груз снимают вручную. Подъемники, оборудованные выдвижными платформами или монорельсами с электроталыо, подают груз непосредственно в проем здания.


    Рис. 42.
    а - с подвесными направляющими, б - мачтовый, в - шахтный; 1 - натяжное устройство. 2 - лебедка, 3-грузонесущее устройство, 4 -направляющие втулки, 5 - грузовой канат, 6 - направляющие, 7 -блок, 8, 13 - рамы, 9 - противовес, 10 - здание, 11 -настенная опора, 12 -ходовые ролики, 14 - шахта

    Мачтовый подъемник включает в себя вертикальную раму, по которой с помощью канатного механизма подъема может перемещаться грузонесущее устройство, снабженное ходовыми роликами. Такие подъемники в ряде случаев можно использовать и для подъема людей. При малой высоте подъема мачтогые подъемники могут стоять свободно, при большой высоте их прикрепляют к стене здания опорами. Груз подают на уровень проема здания или внутрь здания. В последнем случае при использовании выдвижных платформ груз не опускают на перекрытие, а при применении выдвижных монорельсов с электроталями он может быть опущен.

    На строительстве больше всего распространены мачтовые подъемники, как наиболее простые в монтаже.

    Грузоподъемность мачтовых подъемников серии ТП составляет 3,2-5 МН, высота подъема 6-50 м, скорость подъема 0,1-0,52 м/с; груз может перемещаться по горизонтали от мачты на расстояние до 3 м.

    В шахтных подъемниках вместо мачты устанавливают шахту, внутри которой по направляющим с помощью канатного механизма подъема перемещается грузонесущее устройство.

    Шахтные подъемники по назначению подразделяют на грузовые и пассажирские. Их крепят к зданию как с помощью настенных опор, так и оттяжками (при установке подъемника вне здания). В качестве грузонесущих устройств в подъемниках используют платформы, клети и саморазгружающиеся ковши. Шахту собирают из отдельных элементов или секций.

    В некоторых случаях подъемники с жесткими направляющими устанавливают на ходовые рельсовые тележки, что дает им возможность перемещаться в горизонтальном направлении. Такие подъемники обеспечивают прямолинейность движения грузонесу-щего устройства без раскачки, что позволяет повышать их производительность путем увеличения скорости подъема и спуска грузов.

    Ковшовые подъемники (рис. 43) применяют для подъема сыпучих грузов массой до 2 т на высоту до 160 м со скоростью до 60 м/мин. Ковш по наклонным направляющим поднимается с помощью канатов, наматываемых на канатный барабан лебедки, приводимой в действие электродвигателем 5.

    Рис. 43. Ковшовый подъемник:
    1 - ковш, 2 - канат, 3 - направляющая, 4 - лебедка, 5 - электродвигатель

    Монтажные мачты (рис. 44) применяют в случаях, когда использование монтажного крана нерационально, например при единичном подъеме тяжелого груза . Они представляют собой устанавливаемую вертикальную или с небольшим уклоном (10-12°) стойку, удерживаемую системой расчалок. Мачты можно изготовлять как из дерева, так и из металла. В последнем случае они бывают трубчатыми или решетчатыми. Трубчатые мачты достигают высоты до 30 м при грузоподъемности до 30 т, решетчатые соответственно 60 м при 150 т. Разновидностью монтажных мачт являются шевры (рис. 45), грузоподъемность которых достигает 50 т, и монтажные порталы, представляющие собой П-образные рамы с жесткими или шарнирными узлами, предназначенные для подъема громоздких грузов на большую высоту. Порталы в зависимости от назначения бывают неподвижные и качающиеся. Высота порталов может достигать 50 м при расстоянии между его вертикальными стойками 6-9 м, а грузоподъемность - 300 т. Для подъема грузов массой свыше 500 т и более применяют порталы, у которых вместо грузовых полиспастов использована металлическая лента, а вместо лебедок - гидродомкраты.

    Рис. 44. Монтажные мачты:
    а - решетчатая металлическая, б - трубчатая металлическая, в - деревянная; 1 - цилиндр, 2 - отводной блок, 3 - груз, 4 - оттяжка для груза, 5 - грузовой полиспаст, 6 - паук


    Рис. 45. Шевр:
    - грузовой полиспаст, 2 - мачта, 3 - огводной блок, 4 - сбегающая нить грузов вого полиспаста, идущая на лебедку, 5 - канат для изменения вылета мачты


    Рис. 46. Простейшие грузоподъемные устройства:
    а - переносная монтажная стрела, б - мачтово-стреловой кран, в - вантовый кран; 1 - шарнир, 2 - стрела, 3 - стреловой полиспаст, 4 - грузовой полиспаст, 5 - ванты, 6 - мачты, 7 - шаровая пята

    Монтажные стрелы (рис. 46, а) - это грузоподъемное устройство, состоящее из прикрепленной к строительным конструкциям или специальным мачтам консольной наклоняющейся стрелы и канатной лебедки и предназначенное для монтажа оборудования и подъема различных грузов.

    Грузоподъемность переносных монтажных стрел от 3 до 10 т при длине стрелы от 10 до 25 м.

    Основанные на этом принципе мачтово-стреловые краны (рис. 46, б) могут поднимать грузы массой до 40 т, а вантовые (рис. 46, в)-до 40 т и более.

    Рис. 47. Кран-укосина:
    1 - строительная конструкция, 2 - несущая ферма, 3 - блоки. 4 - канат

    Монтажные подъемные краны подразделяют на краны-укосины, полноповоротные переставные и передвижные.

    Кран-укосина (рис. 47) представляет собой закрепляемую на вертикальной мачте или какой-нибудь строительной конструкции жесткую ферму с системой блоков 3, через которые пропущен канат 4 от грузоподъемной лебедки.

    Полноповоротный переставной кран (рис. 48) состоит из опорной тележки или крестовины, на которой смонтирована стрела и полноповоротная платформа с размещенными на ней электродвигателем и червячным редуктором, приводящим во вращение канатный барабан.

    Грузоподъемность этих кранов 0,5-1,0 т при вылете стрелы от 2 до 4 м и высоте его подъема до 50 м, скорость подъема груза 12-15 м/мин, мощность электродвигателя 2,8 кВт, масса 1685 кг.

    Различают передвижные подъемные краны на рельсовом, гусеничном, пневмоколесном и автомобильном ходовом устройстве.

    Кран с вращающейся стрелой, закрепляемой в верхней части перемещающейся по рельсам вертикальной башни, называется башенным краном. Помимо башенных кранов широко распространены краны на гусеничном ходу грузоподъемностью до 160 т. Разновидностью кранов на гусеничном ходу являются краны-трубоукладчики с подъемной стрелой, располагаемой сбоку.

    Пневмоколесные краны обладают повышенной по сравнению с гусеничными кранами маневренностью, их грузоподъемность до 100 т (при использовании выносных опор). Более маневренны краны на автомобильном шасси, грузоподъемность которых достигает 60 т.

    Рис. 48. Полноповоротный переставной кран: 1 - червячный редуктор, 2 - электродвигатель, 3 - платформа, 4 - стрела, 5 - нележка

    Рис. 49. Ленточный конвейер: 1 - электродвигатель, 2 - редуктор, 3, 5 ведущий и ведомый барабаны, 4 - лента, 6 натяжное устройство

    Ленточный конвейер (рис. 49) -это машина для непрерывного транспортирования грузов, грузонесущим и тяговым элементом которой являются замкнутые ленты. Лента увлекается вращающимся ведущим барабаном за счет возникающих между ними сил трения. Ведомый барабан с помощью натяжного устройства в создает требуемое натяжение ленты.

    Перемещаемые ленточным конвейером грузы (штучные или сыпучие) укладываются на несущую ленту, которая составлена из нескольких прорезиненных слоев хлопчатобумажной ткани. Для конвейеров большой длины выпускают ленты, армированные тонкими стальными канатиками. Скорость конвейерной ленты 1,5-2,5 м/с для сыпучих грузов и 0,5-1,5 м/с для штучных. Ленточные конвейеры могут перемещать груз под углом до 20°. В случае, если требуется поднимать грузы на больший угол, на ленту через определенные промежутки устанавливают поперечные планки-удерживатели.

    Ленточные конвейеры изготовляют как стационарные, так и передвижные.

    Расстояние между центрами барабанов передвижных ленточных конвейеров серии ТК равно 5-15 м, ширина ленты 0,4-0,5 м, скорость ее 1,6 м/с и высота разгрузки 1,5-5,5 м. Длина стационарных ленточных конвейеров 40-80 м.

    Пластинчатые конвейеры - это машины, у которых грузонесу-щий элемент состоит из отдельных пластин, прикрепленных к замкнутому тяговому элементу. Такие конвейеры предназначены для перемещения горячих, кусковых и штучных грузов с острыми кромками как по горизонтали, так и под углом до 30°.

    Винтовые конвейеры (рис. 50)-это машины, у которых груз перемещается в трубе-желобе валом с винтовыми лопастями. Винтовые лопасти при вращении захватывают помещенный в трубе-желобе материал и перемещают его в продольном направлении. Винтовые конвейеры применяют для перемещения сыпучих и пластичных материалов на расстояние до 30-40 м как по горизонтали, так и с наклоном до 75-80°.

    Сплошные винтовые лопасти рекомендуются для перемещения сыпучих мелкозернистых материалов, например цемента. Для транспортирования крупнокусковых материалов, таких, как гравий, следует применять винтовые конвейеры с ленточными лопастями и с лопастями в виде лопаток, расположенных по винтовой линии. Пластичные материалы, например бетонные и растворные смеси, следует перемещать с помощью винтовых конвейеров, снабженных фасонными лопастями или лопастями в виде лопаток. Для предотвращения заедания лопастей необходимо следить за тем, чтобы средний размер кусков перемещаемого материала не превышал 8% от величины шага винтовой лопасти и 25% при транспортировании сыпучего материала.

    Элеваторы (рис. 51) -это конвейеры для транспортирования грузов в ковшах, жестко прикрепленных к тяговому элементу, в вертикальном или крутонаклонном направлении. Элеваторы состоят из вертикального короба, внутри которого перемещается бесконечная цепь или лента с равномерно закрепленными на ней грузовыми ковшами или грузоприемнымй площадками. Элеваторы способны поднимать грузы на высоту до 50 м при производительности до 400 м3/ч.


    Рис. 50. Винтовой конвейер:
    а - схема, б - формы винтовых лопастей; 1 - сплошные, // - ленточные, /// - фасонные, IV - в виде лопаток; 1 - элек» тродвигатель, 2 - редуктор, 3 - желоб, 4, 6 - разгрузочное и загрузочное отверстия, 5 - вал с винтовыми лопастями

    Рис. 51. Элеваторы:
    а - цепной, б - ленточный, в - загрузка элеватора, г - разгрузка элеватора; 1 - цепь, 2 - ковш, 3 - лента

    Вибрационные конвейеры - это качающиеся конвейеры, в которых груз перемещается микробросками с отрывом части груза от желоба. Вибрационные конвейеры представляют собой слегка наклоненные под углом 5-15° в сторону разгрузки металлические желоба, к которым подключены вибраторы. В отдельных случаях с помощью вибрационных конвейеров можно подавать материалы под небольшим наклоном вверх. Материал перемещается по вибрационному конвейеру за счет колебаний, сообщаемых желобу.

    Широко распространена виброхоботы, предназначенные для подачи бетонной смеси на глубину до 80 м и обеспечивающие возможность транспортирования не только по вертикали, но и по горизонтали. Для подачи сыпучих и пластичных материалов на небольшое расстояние применяют вибропитатели (рис. 52), оборудованные виброжелобами.

    Пневмотранспортные устройства предназначены для подачи сыпучих и пластичных материалов с.помощью сжатого воздуха. Принцип действия пневмотранспортных устройств заключается в транспортировании частичек материала во взвешенном состоянии в потоке воздуха. По конструкции (рис. 53) пневмотранспортные устройства бывают вакуумными и нагнетательными.


    Рис. 52. Вибропитатель с виброжелобом: 1 - вибраторы, 2 - виброжелоб, 3 - вибропитатель

    В первом случае воздушный насос высасывает из системы воздух, который захватывает частицы материала через сопло и перемещает их в разгружатель материала, откуда он через герметический затвор поступает в приемный бункер. Для удаления из воздуха оставшихся в нем частичек в отводной ветви трубопровода устанавливают дополнительный фильтр.

    Материалы для крана, в основном, нашлись в металлоломе. Покупать пришлось только подшипники, лебёдку, да заказать токарю детали поворотного механизма.

    И ещё мне пришлось заплатить сварщику, так как сам я сварочные работы выполнять не могу, из-за некоторых проблем со зрением.

    В общем этот кран обошёлся в 5 000 рублей, что не идёт ни в какое сравнение с тем объёмом работ, который мне удалось, с его помощью выполнить, ведь самый «дешёвый» подсобник, в нашем регионе, стоит 800 рублей в день.

    Сразу оговорюсь, что в процессе эксплуатации, у моего крана выявились кое-какие недостатки, на которые я укажу, и посоветую, как их исправить. Так что Ваш кран, будет немного отличаться от моего.

    Начнём с поворотного механизма

    Состоит он из шести деталей, которые нужно заказать токарю, и двух подшипников.

    Как видите, на чертеже нет размеров. Дело в том, что точный размер, как у меня, Вам соблюдать совсем не обязательно. Ведь кран мы делаем из подручного материала, и я не могу знать, какого размера швеллер или двутавр, или какая труба окажется у вас под рукой.

    Чуть побольше, или чуть поменьше, в моей конструкции, никакой роли не играет. И вы поймёте это из дальнейших инструкций. А прикинув в общем, какие у вас есть материалы и детали, определите, какие размеры взять для изготовления поворотного механизма.

    В механизме два подшипника. Вверху, между корпусом и основанием стоит опорный подшипник. Внизу, опять же между корпусом и основанием, стоит простой радиальный подшипник.


    Вернее корпус должен быть насажен на подшипник, а основание — войти в него. Тем самым, обе эти детали, соединяются. Для более надёжной фиксации радиального подшипника, снизу на корпус накручивается гайка. Толщина резьбовой и подпорной частей гайки — на ваше усмотрение, но уж не меньше 3 мм.

    Затем этот узел крепится к платформе болтом (у меня М 26), который притягивает основание к платформе.Таким образом получается, что платформа и основание — это неподвижная часть механизма, а корпус с гайкой — вращающаяся.

    Теперь немного о том, что показала практика. К концу сезона, радиальный подшипник чуть-чуть прослаб, и в поворотном механизме образовался еле заметный люфт.

    Но при длине стрелы в 5 метров, этот люфт, стал ощутимо заметен, поэтому рекомендую вместо радиального подшипника, установить ступичный, шириной 36 мм.


    У нас в Казани, опорный и ступичный подшипники, можно купить за 500 рублей оба. И ещё чтобы затянуть болт, крепящий основание к платформе, нужен будет накидной ключ с удлинителем, и обязательно две шайбы — плоская и гровер.

    Следующим узлом у нас будет стойка.


    Для её изготовления потребуется кусок трубы (у меня d140), и четыре куска швеллера. Высоту стойки нужно прикинуть так, чтоб в готовом виде она была Вам как раз по это самое. Даже на сантиметр два пониже. Тогда будет удобно, при эксплуатации крана, крутить лебёдку.

    Так как кусок трубы с ровно подрезанным торцом, Вам едва ли Бог пошлёт, придётся один торец подрезать самому. Для этого берём автомобильный хомут, или делаем хомут из полоски жестянки, и затягиваем его на трубе.

    При затягивании, хомут будет стремиться как можно ровнее расположиться на трубе, и если ему в этом немного помочь (на глаз), то получиться достаточно ровная линия по окружности трубы, которую останется прочертить, потом снять хомут, и отрезать трубу по этой линии, болгаркой.

    Затем, к этому ровному торцу трубы, приваривается платформа поворотного механизма. Теперь понятно почему я не дал размеры в чертеже? Поворотный механизм всё равно ведь придётся заказывать. А тубу можно и найти. Значит диаметр платформы, можно заказать по диаметру трубы.

    Теперь ноги. Их нужно приварить так, чтоб стойка не заваливалась. Как это сделать? Во первых, их нужно нарезать одинаковой длины.

    Затем подвесить трубу с приваренной платформой, пропустив верёвку в отверстие в центре платформы, и подставлять ноги к трубе наискосок, так чтоб в конце концов, труба осталась висеть ровно, а ноги, с четырёх сторон упирались в неё.

    Как только равновесие будет найдено, нужно на глаз отчертить углы у швеллеров, которые упираются в трубу, и подрезать их болгаркой так, как показано на фото.

    После подрезки углов, снова прислонить ноги к трубе, поймать равновесие, проверить рейкой и рулеткой, чтоб они образовывали ровный крест, и прихватить их сваркой. После прихватки ещё раз проверить крест, и можно приваривать.

    Остаётся сделать сам опорный крест. Сделать его можно из любого жёсткого профиля. Поначалу была мысль поставить его на колёса из подшипников, но время поджимало, и до колёс дело не дошло, а так вообще-то было бы неплохо. Агрегат получился довольно таки тяжелый, и передвигать его приходилось с трудом.


    Длина плеч креста, у меня 1.7 метра, хотя как показала эксплуатация, особо большой роли в устойчивости крана, этот крест не играет. Основную устойчивость обеспечивает равновесие, о котором мы ещё поговорим.

    Крест не приварен к ножкам, а прикреплён болтами с гайками М 10. Сделано это для удобства возможной транспортировки. Усиление ножек сделано в расчёте на установку колёс, но до них дело так и не дошло, хотя мысль всё таки установить их, ещё есть.

    Стойка с поворотным механизмом готова, теперь займёмся платформой крана, на которой будут установлены противовес, лебёдки, и стрела. На платформу у меня нашёлся полутораметровый двутавр, шириной 180 мм. Но думаю под неё можно использовать и швеллер, и даже брус 150 х 200.

    Сначала я даже и хотел применить брус, но так как нашёлся двутавр, то выбор остановился на нём. Платформа крепиться к корпусу поворотного механизма четырьмя болтами с гайками М 10.


    Если вместо двутавра применить брус, то для него нужно будет сделать дополнительные площадки, сверху и снизу. Можно «обхватить» его двумя кусками швеллера, и стянуть всё болтами.

    Но с болтами пока подождём, так как место крепления платформы к поворотному механизму, нужно будет подобрать по равновесию. То есть стрела крана, должна уравновеситься блоком для противовесов, и лебёдкой. То есть кран должен уверенно стоять на стойке, и не заваливался.

    Следующим будет блок противовесов.


    У меня он сделан из кусков того же швеллера, что и платформа, но сделать его можно из чего угодно, и как угодно. Главное, должен получиться контейнер, в который можно будет устанавливать грузы, чтоб по необходимости, можно было увеличить противовес.

    Теперь про лебёдку. Лебёдка у меня установлена мощностью в 500 кг, с тормозом. И в очередной раз, как показала практика, такой мощности, для подъёма груза около 100 кг, оказалось недостаточно.

    То есть поднять то его можно, но приходиться так налегать на ручку, что при подъёме на высоту более 5 метров, очень быстро устаёшь. Для такого крана нужна лебёдка на 1 — 1.5 тонны.

    Предполагалась и вторая лебёдка, для подъёма стрелы, но именно в то время, объездив кучу магазинов и рынков, я смог найти только одну лебёдку с тормозом, которую Вы видите на фотографии. Поэтому вместо второй лебёдки, был сделан временный трос-растяжка, длина которого всё же меняется при помощи зажимов.


    К сожалению, нет ничего более постоянного, чем времянка. Вам же рекомендую всё таки поставить вместо него лебёдку, и желательно червячную. Скорость у неё небольшая, и тормоз, хоть вверх хоть вниз — мёртвый. Что для стрелы и нужно.

    Осталось сделать стрелу, чем и займёмся. Стрела состоит из крепления с валом, бруса 150 х 50, и наконечника со шкивом.



    Сначала — корпус крепления. Его лучше сделать из куска швеллера.


    Для вала сгодится любой кругляк, диаметром от 20 до 30 мм. Я например, отрезал кусок вала ротора, какого-то старого двигателя. Затем выгибаем в тисках, вокруг этого вала две скобы и крепим его к швеллеру, в который затем будет вставлен брус.


    Покупаем два простых подшипника, с таким расчётом, чтоб они плотно насаживались на вал, а в корпусе крепления вырезаем посадочное место.


    Как закрепить подшипники в корпусе, можно конечно пофантазировать. Помимо моего, наверное, есть ещё десяток способов. А у меня нашлась пластина эбонита, толщиной 10 мм., из которой я эти крепления и сделал.


    Сама стрела представляет собой брус 150 х 50, длиной 5 метров. Он вставляется в швеллер шириной 80 мм и длиной 2.5 метра. Правда пришлось его немного подстрогать, чтоб он зашёл внутрь швеллера. У меня установлен швеллер, длиной 3.5 метра, но это только потому, что в то время не оказалось под рукой хорошего бруса, с маленькими сучками. Я просто перестраховался, чем, к сожалению, увеличил вес стрелы.

    Брус к швеллеру крепиться стяжками, сделанными из металлической полосы, толщиной 3 мм.


    На конце стрелы, нужно закрепить шкив для троса. У меня он сделан из колеса от сумки тележки. Для умелых рук, вариантов крепления шкива, думаю, полно. У меня сначала он крепился между двумя кусками фанеры, но затем я сделал крепление из швеллера.


    Теперь можно собрать стрелу, если бы не одно «но». В процессе эксплуатации, скобы которыми вал крепиться к швеллеру, оказались слабоватыми. Поэтому я сделал для них усиление.



    И ещё одно дополнение. У меня усиливающая деталь закреплена четырьмя болтами. Нужно добавить ещё два сверху, для большей жёсткость узла. Хотя мой нормально работает и с четырьмя болтами. А то давно бы добавил.

    Теперь можно собрать всю платформу крана, то есть установить на неё лебёдку, под лебёдкой блок для противовесов, с другого конца — корпус подъёма стрелы со стрелой. Если есть, то вторую лебёдку, если нет, то трос растяжку, как у меня.

    Всё это собирается в лежачем положении, и по завершении поднимается вертикально, на какую нибудь опору. Я, например положил друг на друга несколько поддонов, и поставил на них собранную платформу так, чтоб противовес свободно висел вниз.

    Затем крепим поворотный механизм к стойке. Остаётся самое главное — установить платформу на стойку так, чтоб стрела и противовес уравновесили друг друга.

    К сожалению, у меня не сохранилось фотографий конструкции, которую я для этого соорудил, ну попробую объяснить так.

    Конструкция эта представляет из себя треногу с блоком вверху. Высота треноги, примерно, три метра. Делается она из бруса 100 х 50. Как Вы уже наверное догадались, платформу крана, в собранном виде, нужно подвесить и приподнять так, чтоб под неё можно было подставить стойку.

    Подниматься платформа будет своей же лебёдкой. Для этого трос лебёдки пропускаем через блок, и зацепляем за корпус подъёма стрелы, который находиться на противоположном конце платформы.

    Теперь, если работать лебёдкой на подъём, то вся платформа будет подниматься. Но во время подъёма, стрела, поднятая вверх, начинает заваливаться, поэтому нужно, или позвать пару помошников, которые будут фиксировать стрелу в вертикальном положении, или сделать ещё одну треногу (как это было у меня) с блоком, высотой 6 метров, и привязав к концу стрелы верёвку, попустить её через блок, и подтягивать при подъёме платформы.

    Подвесив таким образом платформу, и подведя под неё стойку, можно опуская и приподнимая платформу, и двигая стойку, поймать положение, в котором противовес уравновесит стрелу.

    В этом положении просверливаем 4 сквозных отверстия и крепим болтами платформу к стойке. Ну вот и всё. Кран готов. Можно приступать к испытаниям.

    Ну и пару примеров эксплуатации:



    Общий вид моего крана:

    Если в статье нет ответа на Ваш вопрос — задайте его в комментариях. Постараюсь как можно быстрее ответить.

    Желаю трудовых успехов, а так-же возможности поднять и переместить всё что нужно и куда нужно.