Проект автоматизации и диспетчеризации инженерных систем. Проектирование автоматизации и диспетчеризации инженерных систем. В схеме «звезда» кабелей больше - проект сложнее

Создание систем диспетчеризации является одним из ключевых направлений деятельности компании НОРВИКС-ТЕХНОЛОДЖИ.

Система диспетчеризации представляет собой комплекс программных и аппаратных средств, который позволяет осуществлять удаленное управление инженерными системами одного или нескольких объектов.

Автоматизированная система диспетчерского управления (АСДУ) необходима для контроля инженерного оборудования, разнесенного территориально, а также расположенного в труднодоступных местах. Как правило, диспетчеризация включается в систему управления многофункциональными объектами со сложной инженерной инфраструктурой, такими как офисные здания, торгово-развлекательные центры, а также производственные комплексы и другие промышленные предприятия.

В систему диспетчеризации могут быть включены следующие подсистемы:

  • электроснабжение, газоснабжение;
  • тепло- и водоснабжение, учет энергоресурсов;
  • охранно-пожарная сигнализация, системы пожаротушения и дымоудаления;
  • вентиляция и кондиционирование;
  • видеонаблюдение, контроль и управление доступом;
  • лифтовое хозяйство и другие.

Суть проектирования систем диспетчеризации заключается в решение задачи визуализации информации о функционировании инженерных систем и предоставлении оператору возможности прямого управления оборудованием из диспетчерского пункта. Данные о состоянии инженерного оборудования поступают от контроллеров локальной автоматики и передаются на сервер. Обработанные технологические данные с необходимой аналитической информацией поступают на сервер диспетчеризации и выводятся на экранах компьютеров на рабочих местах операторов в наглядном динамическом графическом виде.

Преимущества системы мониторинга инженерных систем сооружений

Данные, полученные и обработанные системой диспетчеризации, формируются в сообщения разного вида, которые архивируются в долговременные хранилища. На основе этой информации, доступной в любое время, формируются отчеты.

Система диспетчеризация дает ключевые преимущества при управлении объектом:

  • постоянный централизованный контроль работы инженерных систем;
  • оперативное реагирование в аварийных ситуациях;
  • уменьшение влияния человеческого фактора;
  • оптимизация документооборота, системы отчетности.

Компания НОРВИКС-ТЕХНОЛОДЖИ реализует проекты диспетчеризации разной степени сложности.

Наряду с привычными системами компания предлагает системы диспетчеризации с трехмерной визуализацией на основе решения нового поколения GENESIS64. Это качественно новый уровень возможностей диспетчерского мониторинга, который позволяет оператору видеть реалистичное изображение объекта со всеми параметрами, привязанными к конкретным узлам. Диспетчер может изменять в интерактивном режиме детализацию визуализированных объектов, убирая элементы зданий, установок и просматривая их изнутри. Трехмерная визуализация позволят осуществлять виртуальную навигацию по изображенным объектам, предлагает средства анимации и динамики объемных изображений и другие преимущества 3D-технологий.

Ещё одним предметом гордости сотрудников компании является умение проектировать и внедрять крупномасштабные территориально- распределённые системы диспетчеризации, обеспечивающие не только сбор данных от удаленных объектов, но и обеспечение распределённых вычислений, многоуровневую архивацию и резервирование.

На Вашем предприятии необходимо создать систему диспетчеризации? Свяжитесь со специалистами НОРВИКС-ТЕХНОЛОДЖИ для получения консультации.

В основе любого качественного проекта лежит внимание к деталям и всем тонкостям проектируемых систем. Для получения полноценной проектной документации, необходимо максимально точно и детально проработать несколько этапов.

Обследование систем автоматизации и диспетчеризации

Первоначальным и наиболее ответственным этапом при разработке или диспетчеризации является стадия проектирования систем автоматизации . На этом этапе крайне важно предусмотреть всевозможные варианты работы системы и провести максимально детальное обследование существующих систем, составить дефектную ведомость, и составить максимально точное техническое задание на проектирование, совместно с заказчиком.

При проведении обследования и составления акта, мы стараемся обратить внимание свое и заказчика на следующие этапы:

Какое оборудование используется сейчас, есть ли исходное программное обеспечение, насколько актуально оборудование, требуется ли его замена

Трассировка кабелей, где есть лотки и гильзы, как проложить кабель

Можно ли использовать текущую локальную сеть, или нужно проектировать новую

Какое периферийное оборудование используется, и с каким протоколом

Техническое задание

Техническое задание на проектирование систем диспетчеризации составляет заказчик и оно является основанием, для начала разработки проектной документации. В силу огромного количества нюансов, и желания достичь максимального результата, мы всегда помогаем заказчикам составить техническое задание и расписываем в нем все возможные детали, чтобы в дальнейшем, все были довольны результатами работы.

Проектирование систем автоматизации и диспетчеризации

Проектирование систем автоматизации и диспетчеризации процесс очень сложный и ответственный и занимает не мало времени сразу нескольких специалистов. Как правило, раздел проектной документации имеет разные названия, но один смысл, и, если вы увидите одну из следующих аббревиатур, знайти, что речь идет о системах автоматизации и диспетчеризации инженерных систем.

АДИС Автоматизация и Диспетчеризация Инженерных Систем

АСДУ Автоматизированная Система Дистанционного Управления

АСУД Автоматизированная Система Управления и Диспетчеризации

СМИС Система Мониторинга Инженерных Систем

СМИК Система Мониторинга Инженерными Коммуникациями

BMS Building Management Systems

При проектировании, мы уделяем особое внимание смежным разделам, таким как вентиляция, электрика, слабые токи, механика. Все разделы проектирования в итоге должны стыковаться друг с другом.

Проектная документация как правило имеет следующие разделы внутри себя:

Общие данные и пояснительная записка

Принципиальные и функциональные схемы инженерных систем

Принципиальные электрические схемы щитов управления и диспетчеризации

Схемы внешних соединений

Топология сети и структурная схема сети

Монтажные схемы подключения оборудования

Размещение оборудования и кабельных линий на плане

Спецификация

Кабельный журнал

И набор библиотечных элементов проекта, реализующих типовые объекты ЖКХ, позволяют «собирать» системы диспетчеризации из готовых компонентов. Данная разработка позволяет резко упростить создание проектов и на порядок сократить сроки их разработки.

Себестоимость и сроки реализации проектов диспетчеризации оказывают все большее влияние на принятие решений по выбору инструментов для их реализации. Лишние затраты особенно болезненны в ситуации всеобщего секвестра бюджетов, а сроки иногда горят по той же причине – поздно выделяют средства на приобретение комплектации и оплату работ. Не секрет, что в последние годы значительная часть затрат в большинстве проектов приходится на оплату труда разработчиков. Специалистов мало, стоят они не очень дешево. В такой ситуации велик соблазн использовать специализированные системы. Но все, кто пытался идти этим путем, уже в курсе, что он приводит к слишком жесткой системе, не полностью учитывающей локальные особенности и потребности. В результате эффект от ее внедрения во многом сводится на нет. Так что же делать, тратить дефицитные и дорогие силы разработчиков и создавать систему «с нуля» на базе универсальной SCADA-системы?

К счастью, есть и золотая середина. Ее предлагает на базе своей широко распространенной в ЖКХ по всей территории РФ системы и набора типовых элементов проекта. основана на объектной идеологии, поэтому каждый такой элемент проекта полностью реализует типовой объект ЖКХ, включая перечень опрашиваемых и управляемых параметров, их архивы и сообщения, алгоритмы обработки и мнемосхемы, окна управления и отчеты, графики изменения параметров и журналы событий.

Среди типовых объектов:

Индивидуальные тепловые пункты (ИТП);

Газорегуляторные пункты;

Насосные всех видов (водопроводные, канализационные, пожарные, ливневые);

Вентиляционные установки;

Трансформаторные подстанции;

Резервное энергоснабжение (АВР и ДГУ);

Квартирный и домовой учет ресурсов.




Рис. Автоматически конфигурируемая мнемосхема типовой вентустановки

Наряду с библиотекой объектов ЖКХ в есть и полный комплект элементов проекта, необходимый для создания АСКУЭ (АСКУТЭ, АИИС КУЭ): это все требуемые формы отчетности, а также OPC-серверы для большинства распространенных типов счетчиков, например «Меркурий», СЭТ‑4 и др.

Как создается проект из библиотечных типовых объектов?

Для «специализированных» систем (только вентустановки или только ИТП) проект можно просто сгенерировать. Для этого надо задать код состава оборудования. Идея позаимствована из программного продукта SM Constructor, с помощью которого компания Segnetics (г. Санкт-Петербург) конфигурирует свои контроллеры для управления вентиляционными установками и ИТП. Но если там код является результатом конфигурирования, который может быть сразу введен в , то при использовании контроллеров других типов, например Regin, надо проставить «галочки» в опросном листе в файле Excel. Они автоматически суммируются и дают искомый код. На базе этого кода формируется не только состав проекта и связи проектных объектов с установленными контроллерами, но и внешний вид мнемосхем оборудования – неиспользуемые элементы просто отключаются из пользовательского интерфейса. Типовые объекты вентустановок или ИТП могут быть поставлены в открытом (с возможностью их редактирования) или закрытом виде. В последнем случае доступны только «клеммники» объектов для установления связей с оборудованием.

Для систем поквартирного учета ресурсов, которые практически не требуют настройки своего состава, используется другой подход. В проект включены объекты «дом», «подъезд», «этаж», «квартиры», а также сценарий (скрипт), который надо запустить в режиме разработки после того, как для каждого дома будет задано количество подъездов, этажей и квартир на этаже. Проект, включая обзорную мнемосхему, обеспечивающую навигацию по дому, будет сгенерирован полностью автоматически. Важно отметить, что сам скрипт (на языке С#) доступен в редакторе, встроенном в интегрированную среду , в абсолютно открытом виде и может быть изменен для учета особенностей конкретного проекта.




Рис. Генерация проекта поквартирного учета ресурсов с помощью скрипта

Теперь рассмотрим случай, когда в проекте есть объекты самых разных типов. Каждый из них вставляется из библиотеки как единое целое. Для того чтобы реализовать проект, остается выполнить две операции: привязку к оборудованию и размножение объекта данного типа в необходимых количествах. Привязка не вызывает проблем даже у начинающих «автоматизаторов». Дело в том, что уже упомянутый механизм «клеммников» объектов понятен на интуитивном уровне, и перетягивание входов/выходов контроллеров на эти клеммники – дело нескольких минут. Но это несколько минут на один объект. А если их много? В случае если объекты типовые, достаточно будет потратить всего пару дополнительных минут на задействование механизма вызываемых объектов. В проекте так и останется один образцовый объект этого типа, но после задания количества его экземпляров будет автоматически сгенерирован их список и связи каждого экземпляра с оборудованием. Разумеется, переименовать конкретный экземпляр или изменить его связи можно за­тем при необходимости и вручную. В режиме исполнения можно будет вызвать документ отдельного экземпляра из их полного списка.

Мы рассмотрели ситуацию со строго однотипными объектами. Что же делать в ситуации, когда они имеют некоторые различия? В этом случае на помощь приходит другой механизм – шаблон-экземпляр. Типовой библиотечный элемент выступает в качестве шаблона, а размноженные в проекте экземпляры в точности его повторяют, не теряя связи с оригиналом. Мы можем отредактировать любой из них, просмотреть все отличия экземпляров от шаблона, а при изменении шаблона применить эти изменения во всех или в выбранных экземплярах.




Рис. Синхронизация объектов с шаблоном

Как же в случае разнотипных объектов создается обзорная, как правило, стартовая мнемосхема? В данном случае, вероятно, нецелесообразно писать «одноразовый» скрипт. предоставляет разработчику проекта на выбор два основных механизма – кнопка объекта и символ объекта. Проектный объект просто перетаскивается на обзорную мнемосхему, и на ней по выбору разработчика либо создается кнопка со сжатым статическим изображением мнемосхемы объекта, либо «вклеивается» изображение с принадлежащими конкретному экземпляру данными – символ типового объекта, созданный его ав­тором. И в том, и в другом варианте, кроме визуального представления объекта, есть возможность щелчком мыши по кнопке или символу вызывать его мнемосхему или любой иной имеющийся у объекта документ, например журнал сообщений или отчет о расходе ресурсов.

Данный раздел посвящен проектам систем диспетчеризации и автоматизации инженерных систем зданий . Здесь представлены программное обеспечение и оборудование, которые поставляет ИнСАТ для подобных систем, а также услуги, которые ИнСАТ может оказать по их разработке и внедрению.


Для создания систем автоматизации и диспетчеризации инженерных систем зданий компания ИнСАТ предлагает MasterSCADA - один из лидирующих на российском рынке продуктов. Это вертикально интегрированный и объектно ориентированный программный комплекс для разработки систем управления и диспетчеризации.

MasterSCADA имеет ряд специализированных средств для автоматизации зданий :

  • для систем вентиляции и кондиционирования (HVAC) - специализированная библиотека ВФБ
  • для систем учета ресурсов зданий - комплект драйверов для распространенных приборов учета

Ниже приведены примеры проектов, реализованных на MasterSCADA. Набор примеров не является исчерпывающим. Список ведрений MasterSCADA насчитывает уже много тысяч систем , которые успешно работают на территории СНГ. Подробное описание MasterSCADA представлено в разделе Программное обеспечение .


Компания ИнСАТ поставляет широкий спектр оборудования для автоматизации и диспетчеризации инженерных систем зданий . В большенстве приведенных ниже примеров используются аппаратные средства, поставляемые ИнСАТ. Подробную информацию о номенклатуре и стоимости предлагаемого нами оборудования для систем диспетчеризации и энергоучета можно получить в разделе Оборудование .


Инжиниринг в области диспетчеризации и автоматизации зданий

Компания ИнСАТ имеет богатый опыт проектирования и внедрения таких систем, наработанные комплексные решения, готовые проекты узлов учета, шкафов управления приточно-вытяжными установками и т.п. Мы можем выполнить весь комплекс работ по разработке и внедрению систем управления и диспетчеризации зданий. С перечнем оказываемых услуг можно познакомиться в разделе Инжиниринг .

Примеры проектов автоматизации зданий, выполненных на MasterSCADA

На сегодняшний день MasterSCADA применяется в огромном количестве проектов автоматизации и диспетчеризации инженерных систем зданий. Здесь приведены лишь несколько примеров таких проектов.

Подробности Категория: проект Автоматика

Наша компания разработала проект системы автоматизации, диспетчеризации и мониторинга АСДУ для ЦОД.

I.1. Системы автоматизации, диспетчеризации и мониторинга

I.1.1. Система диспетчеризации и управления

Построение системы автоматизированного диспетчерского управления ЦОДов предполагается осуществить на оборудовании с многоуровневой иерархической структурой. Для каждого ЦОД предполагается построение своей выделенной системы.

Верхний уровень системы АСДУ строится на основе сервера с дисковым массивом RAID массивом, который поддерживает горячую замену жестких дисков. Программное обеспечение (ПО) должно осуществлять функции получения информации о состоянии и параметрах оборудования инженерных систем, обработку полученных данных и мониторинг, управление с рабочих станций диспетчеров, документирование, архивирование и хранение информации, отчёты и дополнительные решения для планирования обслуживания, контроля и расчёта энергопотребления, центр регистрации телефонных звонков, планирование инвестиций. ПО должно иметь возможность использования интеграции с любыми локальными системами управления благодаря отличной поддержке открытых технологий (например «OPC», SNMP ).

Системы АСДУ и комплексной безопасности должны обеспечивать интеграцию этих систем. Серверы размещаются в 19” стойке в помещении кроссовой каждого ЦОД.

Рабочие станции диспетчеров размещаются в диспетчерской ЦОД. Количество и назначение рабочих станций определяется на этапе проектирования. Рекомендуемое количество операторов одной смены – 3 человека, рабочих мест – 4:

· АРМ руководителя смены;

· АРМ диспетчера механических систем;

· АРМ диспетчера электрических систем;

· АРМ диспетчера резервное.

Каждое рабочие место оборудовано от одного до трех мониторов с диагональю 21“ и звуковыми колонками для оповещения. В помещении диспетчерской размещаются принтеры для подготовки отчетов и рабочее место для работы с документацией.

На верхнем уровнем АСДУ сетью передачи данных является высокоскоростная сеть 10/100/1000 Мб/с TCP/IP. Сеть организована на базе Ethernet коммутаторов. Центральный коммутатор размещается в кроссовой ЦОДа в 19” монтажном шкафу. Сетевые шлюзы L-IP, FieldServer содержат средства организации независимого обмена информацией между диспетчерскими рабочими станциями (на базе локальной вычислительной сети) и полевыми контроллерами (на базе полевой шины).

Концепция предусматривает применение контролеров и модулей ввода вывода с открытым протоколом обмена.

Диспетчеризация предусматривается для инженерных систем предназначенных только для работы ЦОДов:

· общеобменная приточно-вытяжная вентиляция технических помещений;

· холодильные машины;

· измерители качества электроэнергии на вводных и основных отходящих линиях вводно-распределительных щитов;

· источники бесперебойного питания;

· насосная станция системы холодоснабжения;

· система кондиционирования машзалов и вспомогательных помещений;

· насосные дренажной канализации;

· система управления освещением,

и осуществляется путем сбора полного объема информации с локальных контроллеров и модулей автоматизации.

Сбор информации системы мониторинга состояния монтажных шкафов, системы кондиционирования машинных залов, системы контроля протечек осуществляется по протоколу.

Мониторинг инженерного оборудования входящего в объем основного комплекса:

· система дымоудаления и подпора воздуха;

· система теплоснабжения;

· системы общеобменной вентиляции складов, коридоров, диспетчерских и т.п.

· дизель-генераторы;

· высоковольтные подстанции,

выполняется путем подключения локальных контроллеров автоматизации этого оборудования к полевой шине диспетчеризации.

Диспетчеризация электрических распределительных щитов (ВРУ, ЩБЭ) осуществляется путем получения сигналов с дополнительных контактов автоматических выключателей входными дискретными модулями и контроллерами. Модули и контроллеры размещаются в отдельном шкафу в непосредственной близости от электрических щитов.

Интеграция с системой пожарной сигнализации осуществляется на верхнем уровне систем, каждая панель пожарной сигнализации по внутреннему протоколу подключается в полевую сеть.

Узлы учета тепла и водопотребления устанавливаются непосредственно на вводе в зону ЦОДов и оборудуются интерфейсом для подключения к системе АСДУ.

III.1.2 Система мониторинга инженерного оборудования машзалов

Для организации управления оборудованием физической инфраструктуры ЦОДов, предусматривается использование Nexans LANsense с дополнительным комплексом EMAC (Environmental Monitoring and Access Control). Система служит централизованным хранилищем важнейших данных о состоянии оборудования электропитания, кондиционирования и управления климатическими параметрами среды. Через данную систему могут быть доступны все данные, которые фиксирует то или иное включенное в сеть устройство:

В шкафах распределения питания (PDU) такими параметрами будут: напряжение, ток каждой отходящей линии питания, состояние автоматических выключателей;

Для систем охлаждения – холодопроизводительность кондиционеров, температура хладагента, скорость вращения вентиляторов, температура и влажность входящего/выбрасываемого воздуха, наличие протечек, и другие данные, полученные с внутренних датчиков кондиционера;

Для систем контроля параметров окружающей среды – температура, влажность;

Организация контроля доступа к авктивному оборудованию в серверных шкафах;

Состояние датчиков открытия/ закрытия дверей аппаратных стоек.

Также это решение осуществляет мониторинг работоспособности оборудования в режиме реального времени, предоставляет возможность генерации отчетов произвольной формы.

III.1.3 Автоматизация систем общеобменной вентиляции

Приточно-вытяжные системы оборудуются средствами управления, блокировки, регулирования и контроля обеспечивающими:

Местное управление из венткамер;

Дистанционное управление из помещения Диспетчерской;

Автоматическую блокировку всех элементов технологического оборудования, входящих в состав системы;

Защиту воздухонагревателей от замораживания по температуре воздуха за калорифером и температуре «обратного» теплоносителя;

Предварительный прогрев воздухонагревателя перед включением приточного вентилятора.

Для регулирования температуры и влажности воздуха в приточном воздуховоде устанавливаются датчики температуры и влажности. Регулирование температуры при этом предусматривается путем изменения теплопроизводительности воздухонагревателя воздействием на регулирующий клапан на теплоносителе. Технологический контроль за параметрами теплоносителя осуществляется местными показывающими приборами. При пожаре все системы общеобменной вентиляции отключаются. Оборудование автоматизации устанавливается в металлических щитах в помещениях вентиляционной камеры. Автоматическое управление реализовано на базе свободнопрограммируемых контроллеров.

III.1.4 Автоматизация холодоснабжения

Система автоматизации насосной станции холодоснабжения предусматривает щиты управления: один щит для управления внешним контуром, второй – для контура холодильных машин к потребителю. Щиты управления размещаются в помещении холодильных машин и оборудуются элементами сигнализации и ручного управления. Автоматическое управление реализовано на базе свободнопрограммируемых контроллеров и модулей расширения.

Работа систем холодоснабжения предлагается в двух вариантах:

Основной – сброс тепла в Неву,

Альтернативный – сброс тепла в атмосферу, через сухие градирни.

В основном варианте система автоматизации работает в двух режимах – летнем и зимнем:

В зимнем режиме система управляет производительностью насосов внутреннего контура и через регулирующие клапаны регулирует количество воды, проходящей через прецизионные кондиционеры;

В летнем режиме, по сравнению с зимнем режимом, система автоматизации дополнительно управляет работой чиллеров (управляет производительностью чиллеров, выполняет защитные функции, автоматически определяет переход работы системы из зимнего в летний режим).

В альтернативном варианте система также работает в двух режимах: летнем и зимнем. В зимнем режиме контролирует работу фрикулинга: обеспечивает в наружном гликолевом контуре температуру гликоля, управляет работой градирен, управляет работой насосов внутреннего контура и регулирует количество воды, проходящей через прецизионные кондиционеры. В летнем режиме система автоматизации дополнительно управляет работой чиллеров (управляет производительностью чиллеров, выполняет защитные функции, автоматически определяет переход работы системы из зимнего в летний режим).

Дополнительно система автоматизации осуществляет контроль и поддержание давления во внутреннем водяном контуре.

Циркуляционные насосы могут работать как в ручном, так и в автоматическом режиме, в зависимости от положения переключателя режима Ручное-Отключено-Автоматическое на передней двери щита управления и автоматики.

В ручном режиме каждый насос управляется собственными кнопками «Пуск», «Стоп».

После подачи команды «Включение холодоснабжения» включаются «основные» насосы.

После снятия команды «Включение холодоснабжения» сначала выключаются холодильные машины, а затем, через некоторое время выключаются циркуляционные насосы.

Насосы управляется встроенными преобразователем частоты. При включении насоса, преобразователь частоты должен постепенно повышать частоту до требуемой величины. При выключении насоса преобразователь частоты должен постепенно уменьшить частоту до 0

Наличие любого аварийного сигнала приводит к снятию команды на включение соответствующего насоса. При этом на дверце щита автоматики и управления загорается лампа «авария».

Сброс аварии происходит после устранения причины аварии нажатием кнопки «сброс аварии» на дверце щита автоматики и управления, либо оператором по системе АСДУ.

III.1.5 Автоматизация насосных дренажной канализации

Система автоматизации насосных дренажной канализации предусматривает следующие функции:

Уровень воды в приямке;

Автоматическое включение рабочего насоса, а при аварии резервного насоса;

Автоматический выбор рабочих и резервных насосов для обеспечения равномерной выработки моторесурсов;

Ручное управление насосами с помощью переключателей и кнопок на щитах управления;

Световая сигнализация, на фасаде щита автоматики:

o насосы - «включен»/ «авария»;

o наличие напряжения в сети.

III.1.6 Автоматизация управления освещением

Система управления освещением состоит из этажных щитов автоматизации управления освещением, в которых установлены контроллеры и I/O-модули, кнопочных пультов управления освещением, жк-пультов управления освещением и климатом и мультисенсоров освещенности.

Автоматизация систем управления освещением предусматривает следующие функции:

Ручное управление группами освещения с настенных кнопочных панелей как по отдельности, так и несколькими группами одновременно;

Автоматическое управление по мультисенсорам присутствия и освещенности, а также по расписанию, с целью экономии электроэнергии и ресурса осветительных приборов.

III.1.7 Автоматизация кондиционирования

Система автоматизации кондиционирования состоит из контроллеров управления, установленных в кондиционерах, и датчиков температуры и влажности. Контроллеры оборудуются интерфейсом для подключения к системе АСДУ.

Автоматизация систем кондиционирования предусматривает:

Ручное управление температурной установкой и скоростью вентилятора фэнкойла с настенных панелей;

Автоматическое управление оборудованием;

Дистанционное управление с АРМ оператора;

Поддержание и измерение климатических параметров в помещениях.

III.1.8 Система часофикации

Система часофикации (СЧ) предназначена для создания единой системы времени и синхронизации времени по всем системам. Кроме того, СЧ позволяет отображать визуально время для сотрудников с использованием вторичных часов, подключенных к общей СЧ.

Часовая микропроцессорная станция СТС предназначена для управления вторичными часами – стрелочными и цифровыми, различными исполнительными устройствами, а также синхронизации компьютеров и компьютерных сетей. Модульная структура часовой станции позволяет конфигурировать ее в соответствии с решаемыми задачами, а также добавлять необходимые модули в уже установленную станцию и, при необходимости, расширить функциональность системы единого времени