Импульсные металлоискатели. Технология PI (Pulse Induction). Самодельные металлоискатели, или как сделать металлоискатель своими руками Импульсные мд

Предлагаемый вашему вниманию импульсный металлоискатель является совместной разработкой автора и инженера из г. Донецка (Украина) Юрия Колоколова (адрес в Интернете - http://home.skif.net/~yukol/index.htm), усилиями которого удалось воплотить идею в законченное изделие на основе программируемого однокристального микроконтроллера. Им разработано программное обеспечение, а также проведены натурные испытания и обширная работа по отладке.

В настоящее время московской фирмой "Мастер Кит" (см. также Рекламное приложение в конце книги) планируется выпуск наборов для радиолюбителей для самостоятельной сборки описываемого металлоискателя. Набор будет содержать печатную плату и электронные компоненты, включая уже запрограммированный контроллер. Возможно, для многих любителей поиска кладов и реликвий приобретение такого набора и последующая его несложная сборка окажутся удобной альтернативой приобретению дорогого промышленного прибора или изготовлению металлоискателя полностью своими силами.

Для тех, кто чувствует уверенность в себе и готов попробовать изготовить и запрограммировать микропроцессорный импульсный металлоискатель, на персональной страничке Юрия Колоколова в Интернете помещен код ознакомительной версии прошивки контроллера в формате Intel HEX и другая полезная информация. Данная версия прошивки отличается от полной версии отсутствием некоторых режимов работы металлоискателя.

Принцип действия импульсного или вихретокового металлоискателя основан на возбуждении в металлическом объекте импульсных вихревых токов и измерении вторичного электромагнитного поля, которое наводят эти токи. В этом случае возбуждающий сигнал подается в передающую катушку датчика не постоянно, а периодически в виде импульсов. В проводящих объектах наводятся затухающие вихревые токи, которые возбуждают затухающее электромагнитное поле. Это поле, в свою очередь, наводит в приемной катушке датчика затухающий ток. В зависимости от проводящих свойств и размера объекта, сигнал меняет свою форму и длительность. На рис. 24. схематично показан сигнал на приемной катушке импульсного металлоискателя.

Рис. 24. Сигнал на входе импульсного металлоискателя
Осциллограмма 1 - сигнал в отсутствии металлических мишеней; осциллограмма 2 - сигнал при нахождении датчика вблизи металлического объекта

Импульсные металлоискатели имеют свои достоинства и недостатки. К достоинствам относится малая чувствительность к минерализованному грунту и соленой воде, к недостаткам - плохая селективность по типу металла и сравнительно большое потребление энергии.

Практическая конструкция

Большинство практических конструкций импульсных металлоискателей строятся либо по двухкатушечной схеме, либо по однокатушечной схеме с дополнительным источником питания. В первом случае прибор имеет раздельные приемную и излучающую катушки, что усложняет конструкцию датчика. Во втором случае катушка в датчике одна, а для усиления полезного сигнала используется усилитель, который питается от дополнительного источника питания. Смысл такого построения заключается в следующем - сигнал самоиндукции имеет более высокий потенциал, чем потенциал источника питания, который используется для подачи тока в передающую катушку. Поэтому для усиления такого сигнала усилитель должен иметь собственный источник питания, потенциал которого должен быть выше напряжения усиливаемого сигнала. Это также усложняет схему прибора.

Предлагаемая однокатушечная конструкция построена по оригинальной схеме, которая лишена приведенных выше недостатков.
Основные технические характеристики
Напряжение питания 7,5... 14 В
Потребляемый ток не более 90 мА

Глубина обнаружения:
монета диаметром 25 мм 20 см
пистолет 40 см
каска 60 с

Внимание!

Несмотря на относительную простоту конструкции предлагаемого импульсного металлоискателя, его из-I готовление в домашних условиях может оказаться затруднительным из-за необходимости занесения в микроконтроллер специальной программы. Это можно сделать, только имея соответствующую квалификацию и программно-аппаратные средства для работы с микроконтроллером.

Структурная схема

Структурная схема изображена на рис. 25 Основой устройства является микроконтроллер. С его помощью осуществляется формирование временных интервалов для управления всеми узлами устройства, а также индикация и общее управление прибором. С помощью мощного ключа производится импульсное накопление энергии в катушке датчика, а затем прерывание тока, после которого возникает импульс самоиндукции, возбуждающий электромагнитное поле в мишени.

Рис. 25. Структурная схема импульсного металлоискателя

"Изюминкой" предлагаемой схемы является применение дифференциального усилителя во входном каскаде. Он служит для усиления сигнала, напряжение которого выше напряжения питания, и привязке его к определенному потенциалу (+5 В). Для дальнейшего усиления служит приемный усилитель с большим коэффициентом усиления. Для измерения полезного сигнала служит первый интегратор. Во время прямого интегрирования производится накопление полезного сигнала в виде напряжения, а во время обратного интегрирования производится преобразование результата в длительность импульса. Второй интегратор имеет большую постоянную интегрирования (240 мс) и служит для балансировки усилительного тракта по постоянному току.

Принципиальная схема

Принципиальная схема импульсного металлоискателя изображена на рис. 26 - дифференциальный усилитель, приемный усилитель, интеграторы и мощный ключ. С1 2200М

Рис. 26. Принципиальная электрическая схема импульсного металлоискателя. Усилительный тракт, мощный ключ, интеграторы

Рис. 27. Принципиальная электрическая схема импульсного металлоискателя. Микроконтроллер

На рис. 27 изображен микроконтроллер и органы управления и индикации. Предложенная конструкция разработана полностью на импортной элементной базе. Использованы самые распространенные компоненты ведущих производителей. Некоторые элементы можно попытаться заменить на отечественные, об этом будет сказано ниже. Большинство примененных элементов не являются дефицитными и могут быть приобретены в больших городах России и СНГ через фирмы, торгующие электронными компонентами.

Дифференциальный усилитель собран на ОУ D1.1. Микросхема D1 представляет собой счетверенный операционный усилитель типа TL074. Его отличительными свойствами являются высокое быстродействие, малое потребление, низкий уровень шумов, высокое входное сопротивление, а также возможность работы при напряжениях на входах, близких к напряжению питания. Эти свойства и обусловили его применение в дифференциальном усилителе в частности и в схеме в целом. Коэффициент усиления дифференциального усилителя составляет около 7 и определяется номиналами резисторов R3, R6-R9, R11.

Приемный усилитель D1.2 представляет собой не-инвертирующий усилитель с коэффициентом усиления 56. Во время действия высоковольтной части импульса самоиндукции этот коэффициент снижается до 1 с помощью аналогового ключа D2.1. Это предотвращает перегрузку входного усилительного тракта и обеспечивает быстрое вхождение в режим для усиления слабого сигнала. Транзистор VT3, а также транзистор VT4, предназначены для согласования уровней управляющих сигналов, подаваемых с микроконтроллера на аналоговые ключи.

С помощью второго интегратора D1.3 производится автоматическая балансировка входного усилительного тракта по постоянному току. Постоянная интегрирования 240 мс выбрана достаточно большой, чтобы эта обратная связь не влияла на усиление быстро изменяющегося полезного сигнала. С помощью этого интегратора на выходе усилителя D1.2 при отсутствии сигнала поддерживается уровень +5 В.

Измерительный первый интегратор выполнен на D1.4. На время интегрирования полезного сигнала открывается ключ D2.2 и, соответственно, закрывается ключ D2.4. На ключе D2.3 реализован логический инвертор. После завершения интегрирования сигнала ключ D2.2 закрывается и открывается ключ D2.4. Накопительный конденсатор С6 начинает разряжаться через резистор R21. Время разряда будет пропорционально напряжению, которое установилось на конденсаторе С6 к концу интегрирования полезного сигнала.

Это время измеряется с помощью микроконтроллера, который осуществляет аналого-цифровое преобразование. Для измерения времени разряда конденсатора С6 используются аналоговый компаратор и таймеры, которые встроены в микроконтроллер D3.

С помощью светодиодов VD3...VD8 производится световая индикация. Кнопка S1 предназначена для начального сброса микроконтроллера. С помощью переключателей S2 и S3 задаются режимы работы устройства. С помощью переменного резистора R29 регулируется чувствительность металлоискателя.

Алгоритм функционирования

Рис. 28. Осциллограммы

Для разъяснения принципа работы описываемого импульсного металлоискателя на рис. 28 приведены осциллограммы сигналов в наиболее важных точках прибора.

На время интервала А открывается ключ VT1. Через катушку датчика начинает протекать пилообразный ток -осциллограмма 2. При достижении тока около 2 А ключ закрывается. На стоке транзистора VT1 возникает выброс напряжения самоиндукции - осциллограмма 1. Величина этого выброса - более 300 В (!) и ограничивается резисторами R1, R3. Для предотвращения перегрузки усилительного тракта служат ограничительные диоды VD1, VD2. Также Для этой цели на время интервала А (накопление энергии в катушке) и интервала В (выброс самоиндукции) открывается ключ D2.1. Это снижает сквозной коэффициент усиления тракта с 400 до 7. На осциллограмме 3 показан сигнал на выходе усилительного тракта (вывод 8 D1.2). Начиная с интервала С, ключ D2.1 закрывается и коэффициент усиления тракта становится большим. После завершения защитного интервала С, за время которого усилительный тракт входит в режим, открывается ключ D2.2 и закрывается ключ D2.4 - начинается интегрирование полезного сигнала - интервал D. По истечении этого интервала ключ D2.2 закрывается, а ключ D2.4 открывается - начинается "обратное" интегрирование. За это время (интервалы Е и F) конденсатор С6 полностью разряжается. С помощью встроенного аналогового компаратора микроконтроллер отмеряет величину интервала Е, которая оказывается пропорциональной уровню входного полезного сигнала. Для версии 1.0 микропрограммного обеспечения установлены следующие значения интервалов:

А-60...200 мкс, С - 8 мкс,

В- 12 мкс, D - 50 мкс,

A+B+C+D+E+F - 5 мс - период повторения.

Микроконтроллер обрабатывает полученные цифровые данные и индицирует с помощью светодиодов VD3-VD8 и излучателя звука Y1 степень воздействия мишени на датчик. Светодиодная индикация представляет собой аналог стрелочного индикатора - при отсутствии мишени горит светодиод VD8, далее в зависимости от уровня воздействия последовательно загораются VD7, VD6 и т.д.

Типы деталей и конструкция

Вместо операционного усилителя D1 TL074N можно попробовать применить TL084N или по два сдвоенных ОУ типов TL072N, TL082N. Микросхема D2 - это счетверенный аналоговый ключ типа CD4066, который можно заменить на отечественную микросхему К561КТЗ. Микроконтроллер D4 AT90S2313-10PI прямых аналогов не имеет. В схеме не предусмотрены цепи для его внутрисхемного программирования, поэтому контроллер желательно устанавливать на панельку, чтобы его можно было перепрограммировать.

Стабилизатор 78L05 можно, в крайнем случае, заменить на КР142ЕН5А.

Транзистор VT1 типа IRF740 можно попробовать заменить на IRF840. Транзисторы VT2-VT4 типа 2N5551 можно заменить на КТ503 с любым буквенным индексом. Однако следует обратить внимание на тот факт, что они имеют разную цо-колевку. Светодиоды могут быть любого типа, VD8 желательно взять другого цвета свечения. Диоды VD1, VD2 типа 1N4148.

Резисторы могут быть любых типов, R1 и R3 должны иметь рассеиваемую мощность 0,5 Вт, остальные могут быть 0,125 или 0,25 Вт. R9 и R11 желательно подобрать, чтобы их сопротивление отличалось не более, чем на 5 %.

Подстроечный резистор R7 желательно использовать многооборотный.

Конденсатор С1 - электролитический, на напряжение 16 В, остальные конденсаторы керамические. Конденсатор С6 желательно взять с хорошим ТКЕ.

Кнопка S1, переключатели S2-S4, переменный резистор R29 могут быть любых типов, которые подходят по габаритам. В качестве источника звука можно использовать пьезоизлучатель или головные телефоны от плеера.

Конструкция корпуса прибора может быть произвольной. Штанга вблизи датчика (до 1 м) и сам датчик не должны иметь металлических деталей и элементов крепления. В качестве исходного материала для изготовления штанги удобно использовать пластиковую телескопическую удочку.

Датчик содержит 27 витков провода диаметром 0,6...0,8 мм, намотанного на оправке 190 мм. Датчик не имеет экрана и его крепление к штанге должно осуществляться без применения массивных шурупов, болтов и т.д. (!) В остальном технология его изготовления может быть такая же, как для индукционного металлоискателя. Для соединения датчика и электронного блока нельзя использовать экранированный кабель из-за его большой емкости. Для этих целей надо использовать два изолированных провода, например типа МГШВ, свитых вместе.

Налаживание прибора

Внимание! В приборе имеется высокое, потенциально опасное для жизни напряжение - на коллекторе VT1 и на датчике. Поэтому при настройке и эксплуатации следует соблюдать меры электробезопасности.

1. Убедиться в правильности монтажа.

2. Подать питание и убедиться, что потребляемый ток не превышает 100 (мА).

3. С помощью подстроечного резистора R7 добиться такой балансировки усилительного тракта, чтобы осциллограмма на выводе 7 D1.4 соответствовала осциллограмме 4 на рис. 28. При этом необходимо следить за тем, чтобы сигнал в конце интервала D был неизменным, т.е. осциллограмма в этом месте должна быть горизонтальной.

В дальнейшей настройке правильно собранный прибор не нуждается. Необходимо поднести датчик к металлическому объекту и убедиться в работе органов индикации. Описание работы органов управления приводится в описании программного обеспечения.

Программное обеспечение

На момент написания этой главы было разработано и протестировано программное обеспечение версий 1.0 и 1.1. Код "прошивки" версии 1.0 в формате Intel HEX можно найти в Интернете на персональной страничке Юрия Колоко-лова .

Коммерческая версия 1.1 программного обеспечения планируется к поставке в виде уже запрограммированных микроконтроллеров в составе наборов, выпускаемых фирмой "Мастер Кит" . Версия 1.0 реализует следующие функции:

Контроль напряжения питания - при напряжении питания менее 7 В начинает прерывисто загораться светоди-од VD8;

Фиксированный уровень чувствительности;

Статический режим поиска.

Версия программного обеспечения 1.1 отличается тем, что позволяет регулировать чувствительность прибора с помощью переменного резистора R29.

Работа над новыми версиями программного обеспечения продолжается, планируется введение дополнительных режимов. Для управления новыми режимами зарезервированы переключатели S1, S2. Новые версии, после их всестороннего тестирования, будут доступны в наборах "Мастер Кит". Информация о новых версиях будет публиковаться в Интернете на персональной страничке Юрия Колоколова .

Принцип работы

На поисковую головку-излучатель (индуктивности 0.2-0.3 мкГн) импульсного детектора металлов подаются импульсы с частотой следования 40 – 200 Гц большой силы тока (до 20 А) и напряжением до 200 В. Если рядом с излучателем нет металлического предмета, то задний фронт импульса остается коротким. В случае близкого расположения трубы, кабеля или чего-нибудь токопроводящего, задний фронт затягивается.

Рис.1. Временная диаграмма импульсного металлодетектора

На основе анализа переходного процесса можно судить о наличии не только металлического предмета, но и о виде металла.

Структурная схема

В основу прибора положена схема, разработанная Ю.Колоколовым, с обработкой параметров импульса при помощи микроконтроллера. Это позволило упростить схемотехнику прибора без снижения технических характеристик.

Технические характеристики металлоискателя:

Напряжение питания: 7,5 – 14 В.
Потребляемый ток: 90 мА.
Глубина обнаружения:
- монета диаметром 25 мм: 0,23м;
- пистолет: 0,40 м;
- каска: 0,60 м.

Рис.2. Структурная схема металлоискателя

"Изюминкой" этой схемы является применение дифференциального усилителя во входном каскаде. Он служит для усиления сигнала, напряжение которого выше напряжения питания. Дальнейшее усиления обеспечивает приемный усилитель. Для измерения полезного сигнала предназначен первый интегратор. Во время прямого интегрирования производится накопление полезного сигнала, а во время обратного интегрирования - преобразование результата в цифровую форму. Второй интегратор имеет большую постоянную интегрирования (240 мс) и служит для балансировки усилительного тракта по постоянному току.

Принципиальная схема

Принципиальная схема импульсного металлоискателя приведена на рис. 3.

Рис.3. Принципиальная схема металлоискателя

Мощный ключ собран на полевом транзисторе VT1. Так как полевой транзистор IRF740 имеет емкость затвора более 1000пФ, для его быстрого закрытия используется предварительный каскад на транзисторе VT2. Скорость открытия мощного ключа уже не столь критична из-за того, что ток в индуктивной нагрузке нарастает постепенно. Резисторы R1,R3 предназначены для "гашения" энергии самоиндукции. Защитные диоды VD1,VD2 ограничивают перепады напряжения на входе дифференциального усилителя.

Дифференциальный усилитель собран на D1.1. Микросхема D1 представляет собой счетверенный операционный усилитель TL074. Его отличительными свойствами являются высокое быстродействие, малое потребление, низкий уровень шумов, высокое входное сопротивление, а также возможность работы при напряжениях на входах, близких к напряжению питания. Коэффициент усиления дифференциального усилителя составляет около 7 и определяется номиналами резисторов R3, R6, R9, R11.Приемный усилитель D1.2 представляет собой неинвертирующий усилитель с коэффициентом усиления 57. Во время действия высоковольтной части импульса самоиндукции этот коэффициент снижается до 1 с помощью аналогового ключа D2.1 что предотвращает перегрузку входного усилительного тракта и обеспечивает быстрое вхождение в режим для усиления слабого сигнала. Транзисторы VT3 и VT4 предназначены для согласования уровней управляющих сигналов, подаваемых с микроконтроллера на аналоговые ключи.

С помощью второго интегратора D1.3 производится автоматическая балансировка входного усилительного тракта по постоянному току. Постоянная интегрирования 240 мс. выбрана достаточно большой, чтобы эта обратная связь не влияла на усиление быстро изменяющегося полезного сигнала. С помощью этого интегратора на выходе усилителя D1.2 при отсутствии сигнала поддерживается уровень +5 В.

Измерительный первый интегратор выполнен на D1.4. На время интегрирования полезного сигнала открывается ключ D2.2 и соответственно закрывается ключ D2.4. На ключе D2.3 реализован логический инвертор. После завершения интегрирования сигнала ключ D2.2 закрывается и открывается ключ D2.4. Накопительный конденсатор C6 начинает разряжаться через резистор R21. Время разряда будет пропорционально напряжению, которое установилось на конденсаторе C6 к концу интегрирования полезного сигнала. Это время измеряется с помощью микроконтроллера, который осуществляет аналого-цифровое преобразование. Для измерения времени разряда конденсатора C6 используются аналоговый компаратор и таймеры, которые встроены в микроконтроллер D3.
Микроконтроллер AT90S2313 также имеет в своем составе 8-ми битный RISC процессор с быстродействием 10 MIPS, 32 рабочих регистра, 2 килобайта Flash ПЗУ, 128 байт ОЗУ, сторожевой таймер.

С помощью светодиодов VD3...VD8 производится световая индикация. Кнопка S1 предназначена для начального сброса микроконтроллера. С помощью переключателей S2 и S3 задаются режимы работы устройства. С помощью переменного резистора R29 регулируется чувствительность металлоискателя.

Алгоритм функционирования

Для разъяснения принципа работы описываемого импульсного металлоискателя ниже приведены осциллограммы сигналов в наиболее важных точках прибора (рис.4)

Рис.4. Осциллограмма прибора

На время интервала A открывается ключ VT1. Через катушку датчика начинает протекать пилообразный ток. При достижении величины тока около 2 А ключ закрывается. На стоке транзистора VT1 возникает выброс напряжения самоиндукции. Величина этого выброса более 300В и ограничивается резисторами R1, R3. Для предотвращения перегрузки усилительного тракта служат ограничительные диоды VD1, VD2. Также для этой цели на время интервала A (накопление энергии в катушке) и интервала B (выброс самоиндукции) открывается ключ D2.1. Это снижает сквозной коэффициент усиления тракта с 400 до 7. На осциллограмме 3 показан сигнал на выходе усилительного тракта (вывод 8 D1.2). Начиная с интервала C ключ D2.1 закрывается и коэффициент усиления тракта становится большим. После завершения защитного интервала C, за время которого усилительный тракт входит в режим, открывается ключ D2.2 и закрывается ключ D2.4 - начинается интегрирование полезного сигнала интервал D. По истечении этого интервала ключ D2.2 закрывается, а ключ D2.4 открывается - начинается "обратное" интегрирование. За это время (интервалы E и F) конденсатор C6 полностью разряжается. С помощью встроенного аналогового компаратора микроконтроллер отмеряет величину интервала E, которая оказывается пропорциональной уровню входного сигнала. Для версий V1.0 и V1.1 микропрограммного обеспечения установлены следующие значения интервалов: A - 60...200 мкс, мкс, B - 12 мкс, C - 8 мкс, D - 50 мкс, А + В + С + D + E + F (период повторения).

Микроконтроллер обрабатывает полученные цифровые данные и индицирует с помощью светодиодов VD3...VD8 и излучателя звука Y1 степень воздействия мишени на датчик. Светодиодная индикация представляет собой аналог стрелочного индикатора - при отсутствии мишени горит светодиод VD8, далее в зависимости от уровня воздействия последовательно загораются VD7,VD6 и т.д.
Настройку прибора рекомендуется проводить в следующей последовательности:
- убедиться в правильности монтажа;

Подать питание и убедиться, что потребляемый ток не превышает 100 мА;
- вместо резистора R7 установить переменный резистор и вращая его ротор добиться такой балансировки усилительного тракта, чтобы осциллограмма на выводе 7 D1.4 соответствовала осциллограмме 4 (рис. 4). При этом необходимо следить за тем, чтобы сигнал в конце интервала D был неизменным, т.е. осциллограмма в этом месте должна быть горизонтальной. После этого переменный резистор необходимо измерить и заменить на постоянный ближайшего номинала.

Собрать металлодетектор можно из деталей набора NM8042, выпущенного компанией МАСТЕР КИТ и включающего в себя печатную плату, корпус, полный комплект деталей и инструкцию по сборке.

Рис.5. Собранный металлодетектор из набора NM8042 МАСТЕР КИТ

Поисковая головка

Поисковая головка для металлодетектора - одна из важнейших его частей. От качества ее изготовления зависит, как будет работать прибор.

Данные катушки - диаметр 19 см, количество витков 27, провод ПЭВ, ПЭЛ 0,5 мм, кабель для катушки - двухпроводной, многожильный не экранированный провод в резиновой изоляции. Данная головка обеспечивает чувствительность обнаружения монеты 5 коп (СССР) на расстоянии 19 -20 см на воздухе.

Рис.6. Одноконтурная головка

Одно контурная поисковая головка диаметром 19 мм не обладает достаточной чувствительностью к мелким металлическим объектам (например ювелирным украшениям), маленькая же имеет небольшую глубину поиска. Совместить глубину поиска с чувствительностью к мелким объектам можно изготовив двухконтурную поисковую головку.

Рис.7. Двухконтурная головка

На кусочках ДВП размечаем контуры будущей катушки (внешний диаметр 200 мм, внутренний диаметр 90 мм, толщина стенок 18 мм). Наматываем катушки. На отправке диаметром 19,2 мм – 25 витков, на оправке диаметром 84 мм – 5 витков. Пропитываем катушки лаком и укладываем их в канавки, соединяя последовательно. Заводим кабель, распаиваем концы, вставляем кабельный ввод. Кладем катушку вверх канавкой и заливаем канавку эпокисдной смолой. После полимеризации переворачиваем катушку, вклеиваем ушки и покрываем всю поверхность эпоксидкой в 2 слоя. Распаиваем штекер, кабель оборачиваем скотчем для защиты от краски и 2-3 раза окрашиваем катушку.

Конструкция катушки позволяет локализовать 1 коп (СССР) на расстоянии 100 мм. Центр объекта очень легко определяется, поскольку диаграмма чувствительности к небольшим предметам получается конусной (в центре на 1-2 см больше).

Верхняя штанга

Для изготовления верхней штанги металлодетектора потребуется отрезок дюралюминиевой, медной или латунной трубы диаметром 22 мм с толщиной стенок 2 мм. Его длина - 120-140 см. Из трубы с помощью трубогиба выгибается S-образная штанга (см рис. 8).

Рис.8. Чертеж штанги

Из листового металла 1,5 - 2,5 мм вырезается и изгибается подлокотник. Подлокотник крепится к штанге болтом М6. Под подлокотником находится контейнер для элементов питания. Провод питания пропущен внутри штанги и выведен через отверстие диаметром 5 мм в районе электронного блока. Пластиковая затяжная муфта взята от раздвигающейся щетки для мытья окон. Внутренний диаметр затяжного элемента муфты - 16 мм, внешний – 20 мм. Затяжной элемент вклеивается в штангу на эпоксидной смоле. Неопреновая ручка может быть заменена отрезком резинового шланга или поролоновым валиком.

Нижняя штанга

Нижняя штанга намотана на оправке диаметром 14 мм из 6 слоев стеклоткани до получения диаметра 16 мм. Длина штанги - 500-750 мм. В моем варианте штанга сделана разрезной из 2 частей по 370 мм каждая.

Общий вид прибора приведен на рис. 9.

Рис.9. Общий вид прибора

От величины электрического сопротивления катушки с проводом зависит время затухания этого электрического импульса. Полное отсутствие сопротивления, или напротив очень высокая его величина заставит импульс колебаться. Это похоже на бросание резинового мячика на очень твердую поверхность, на которой он отскакивает многократно, прежде чем успокоится окончательно. При достаточном электрическом сопротивлении время затухания импульса укорачивается и отраженный импульс «сглаживается». Это аналогично бросанию резинового мячика в подушку. Про катушку детектора с импульсной индукцией говорят, что она критично заглушена, когда отраженный импульс быстро затухает до нуля без колебаний. Чрезмерное или недостаточное подавление будет вносить нестабильность в работу и маскировать сигналы от хорошо проводящих металлов таких, как золото и уменьшать глубину обнаружения. Когда металлический предмет находится поблизости от поисковой катушки, он запасает в себе некоторую часть энергии импульса, что приводит к затягиванию процесса затухания этого импульса до нуля. Изменение в ширине отраженного импульса измеряется и сигнализирует о присутствии металлического объекта. Для того чтобы выделить сигнал такого объекта, мы должны измерить ту часть импульса, где он спадает к нулю (хвост). На входе приемника катушки стоит резистор и ограничивающий диодная схема, которые обрезают напряжение входного импульса до величины 1 вольт, чтобы не перегружать вход схемы. Сигнал в приемнике состоит из импульса от передатчика и отраженного импульса. Обычно усиление приемника составляет 60 децибел. Это означает, что область, где отраженный сигнал спадает до нуля можно увеличить в 1000 раз.

Схема стробирования.
Усиленный сигнал от приемника поступает в схему, измеряющую время падения напряжения до нуля. Отраженный импульс преобразуется в последовательность импульсов. Когда металлический предмет приближается к катушке, форма импульса передатчика не изменится, а вот отраженный импульс станет немного длиннее. Увеличение длительности «хвоста» импульса всего на несколько миллионных долей секунды (микросекунды) достаточно для того, чтобы определить наличие металла под катушкой. На этот отраженный импульс накладываются импульсы (стробы), синхронизованные с началом импульса передатчика, и на выходе электронной схемы получается серия стробов, количество которых пропорционально длине «хвоста» импульса. Наиболее чувствительный импульс расположен максимально близко к концу хвоста там, где напряжение совсем близко к нулю. Обычно это временная область около 20-ти микросекунд после выключения передатчика и начала отраженного импульса. К сожалению, это так же область где работа металлодетектора с импульсной индукцией становится неустойчивой. По этой причине большинство моделей металлодетекторов с импульсной индукцией продолжают вырабатывать стробирующие импульсы еще 30-40 микросекунд после полного затухания отраженного импульса.

Интегратор.
Далее стробированный сигнал должен быть преобразован в напряжение постоянного тока. Это выполнятся схемой – интегратором, который усредняет последовательность импульсов и преобразует их в соответствующее напряжение, которое возрастает, когда объект близко от рамки и уменьшается, когда объект удаляется. Напряжение дополнительно усиливается и управляет схемой звукового контроля.
Период времени, в течение которого интегратор собирает входящие стробы, называется постоянной времени интегратора - (ПВИ). Она определяет то, насколько быстро металлодетектор реагирует на металлический объект. Длительная ПВИ (порядка секунд) имеет преимущество в уменьшении шума и упрощении настройки детектора, но при этом требует очень медленного перемещения поисковой катушки, поскольку объект может быть пропущен при быстром движении. Короткая ПВИ (порядка десятых долей секунды) быстрее реагирует на цель, что позволяет быстрее перемещать катушку, но помехоустойчивость и стабильности работы ухудшаются.

ДИСКРИМИНАЦИЯ (распознавание).
Металлодетектор с импульсной индукцией не способны к такой же степени дискриминации как СНЧ приборы. За счет измерения увеличивающегося периода времени между окончанием импульса передатчика и точкой, в которой отраженный импульс рассасывается до нуля (время задержки), можно отфильтровать объекты, состоящие из определенных металлов. На первом месте по этой характеристике стоит алюминиевая фольга, затем мелкие никелевые монетки, пуговицы и золото. Некоторые монеты могут быть вычислены по очень длинному хвосту импульса, однако железо, таким образом, НЕ определяется.
Было сделано много попыток создать металлодетектор с импульсной индукцией, способный определять железо, однако все эти попытки имели очень ограниченный успех. Хотя железо и дает длинный «хвост», серебро и медь имеют такие же характеристики. Столь длительная задержка плохо влияет на определение глубины залегания. Содержание минералов в почве также будет удлинять отраженный импульс, изменяя точку, в которой объект определяется или отвергается. Если постоянная времени интегратора настроена так, что золотое кольцо не определяется в воздухе, это же кольцо может «засветиться» в грунте, насыщенном солями. Таким образом, почва, насыщенная солями, изменяет всё, что относится к времени задержки и избирательной способности металлодетектора с импульсной индукцией.

ОТСТРОЙКА ОТ ЗЕМЛИ.
Отстройка от земли является очень критичной для СНЧ приборов, но не для металлодетекторов с импульсной индукцией. В среднем почва не запасает какого-либо значительного количества энергии от поисковой катушки и обычно сама не даёт никакого сигнала. Почва не будет маскировать сигнал от объекта и даже напротив, минерализация почвы слегка удлиняет сигнал пропорционально увеличению глубины залегания предмета. По отношению к МД с импульсной индукцией часто применяется термин «автоматическая отстройка от земли» (automatic ground balance) они обычно не реагируют на избыточную минерализацию почвы, не требуют внешней подстройки для разных типов почвы. Исключением является один из наиболее неприятных компонентов грунта - магнетит (Fe3O4), или магнитный оксид железа. Он вызывает перегрузку входных катушек детекторов СНЧ типа, сильно уменьшая их чувствительность, металлодетекторы с импульсной индукцией будут работать, но могут показывать ложные цели, если поднести катушку слишком близко к земле. Можно свести до минимума этот вредный эффект, удлинив время задержки между окончанием импульса передатчика и началом стробирования. Настраивая эту постоянную времени можно отстроиться от помех, вызванных минерализацией грунта.

АВТОМАТИЧЕСКАЯ И РУЧНАЯ НАСТРОЙКА.
Большинство металлодетекторов с импульсной индукцией имеют ручную настройку. Это означает, что оператор должен крутить настройку до тех пор, пока не послышится щелкающий или зудящий звук в наушниках. Если почва в районе поиска изменяется от и до нейтрального песка или от сухой почвы до морской воды, в этом случае подстройка необходима. Если этого не делать, можно потерять в глубине обнаружения и пропустить некоторые объекты. Ручная настройка очень затруднительна при использовании короткой постоянной времени интегратора (ПВИ). Поэтому многие приборы с ручной настройкой имеют длинную ПВИ и требуют медленного перемещения поисковой катушки.
Нет проблем с использованием МД с импульсной индукцией для подводного поиска, поскольку при этом поисковую катушку не перемещают быстро. При использовании в полосе прибоя, катушка будет, находится то в воде, то под водой, и при таких условиях использование приборов с ручной настройкой может вас сильно разочаровать, поскольку придется непрерывно подстраивать порог срабатывания. Некоторые операторы в таком случае сразу настраивают прибор чуть ниже порога срабатывания. Но это может привести к уменьшению глубины обнаружения, при изменении характеристик почвы.
Автоматическая настройка (SAT- self adjusting Threshold) дает значительное преимущество при поиске в и над соленой водой или на почве с высоким содержанием солей. Она позволяет использовать детектор на максимальной чувствительности без постоянной подстройки. Это улучшает стабильность работы, помехозащищенность и позволяет использовать больший коэффициент усиления. МД с импульсной индукцией не излучают сильные отрицательные сигналы как СНЧ приборы. Поэтому они не зашкаливают на ямах с минералами. Необходимо непрерывно перемещать катушку металлоискателя оснащенного системой автоподстройки, если вы останавливаете катушку, настройка сбивается или прибор перестает реагировать.

Аудио контроль.
Схемы звуковой сигнализации МД с импульсной индукцией распадаются на две категории: с изменяющейся частотой и изменяющейся громкостью. Схемы с изменяющейся частотой, построенные на основе генератора управляемого напряжением, хороши для регистрации небольших предметов, поскольку изменение в частоте легче уловить на слух, чем изменение в громкости, особенно при небольшом уровне громкости, особенно для приборов с ручной подстройкой порога. Однако звук похожий на пожарную сирену быстро утомляет, а некоторые люди не способны различать высокие тона. Один из хороших вариантов - это механическая вибрация, которая первоначально использовалось для подводных аппаратов. Такой прибор издает звуки и вибрацию, которая нарастает до жужжания при обнаружении объекта. Сигналы такого механического прибора легко распознать и они не заглушаются системой подачи воздуха.
Многие люди предпочитают более традиционный звуковой тон с нарастанием громкости, а не частоты. Такие системы звукового контроля работают хорошо в приборах, с быстрым перемещением рамки, те в приборах с автоматической подстройкой, при этом они звучат аналогично приборам с СНЧ.

Выводы по МД с импульсной индукцией.
Это специализированные инструменты. Они мало пригодны для поиска монет в городских условиях, поскольку не могут отфильтровать железный и ферросодержащий мусор. Они могут быть использованы для археологических поисков в сельской местности, где нет железного мусора в больших количествах, поиска золотых самородков и для поиска на максимальной глубине в экстремальных условиях, таких как побережья морей или места, где земля сильно минерализирована. Такие металлодетекторы показывают отличные результаты в подобных условиях и в целом сравнимы с СНЧ приборами, особенно по их способностям отстраиваться от таких грунтов и «пробивать» их на максимальную глубину.

Предлагаемый вашему вниманию импульсный
металлоискатель является совместной разработкой Юрия Колоколова и
Андрея Щедрина . Прибор предназначен для любительского поиска кладов и
реликвий, поиска на пляже и т.д. После публикации первой версии
металлоискателя в , этот прибор получил высокую оценку среди
любителей, повторивших конструкцию. Вместе с тем были высказаны полезные
замечания и пожелания, которые мы учли в новой версии прибора.

В настоящее время металлоискатель серийно
выпускается московской фирмой “МАСТЕР КИТ” в виде наборов “сделай
сам” для радиолюбителей.
Набор содержит печатную плату, пластиковый корпус и электронные
компоненты, включая уже запрограммированный контроллер. Возможно, для
многих любителей приобретение такого набора и последующая его несложная
сборка окажутся удобной альтернативой приобретению дорогого
промышленного прибора или полностью самостоятельному изготовлению
металлоискателя.

Принцип действия импульсного или
вихретокового металлоискателя основан на возбуждении в металлическом
объекте импульсных вихревых токов и измерении вторичного
электромагнитного поля, которое наводят эти токи. В этом случае
возбуждающий сигнал подается в передающую катушку датчика не постоянно, а
периодически в виде импульсов. В проводящих объектах наводятся
затухающие вихревые токи, которые возбуждают затухающее электромагнитное
поле. Это поле, в свою очередь, наводит в приемной катушке
датчика затухающий ток. В зависимости от проводящих свойств и размера
объекта, сигнал меняет свою форму и длительность. На рис. 1.
Схематично показан сигнал на приемной катушке импульсного
металлоискателя. Осциллограмма 1 – сигнал в отсутствии металлических
мишеней, осциллограмма 2 – сигнал при нахождении датчика вблизи
металлического объекта.

Импульсные металлоискатели имеют свои достоинства и
недостатки. К достоинствам относится малая чувствительность к
минерализованному грунту и соленой воде, к недостаткам – плохая
селективность по типу металла и сравнительно большое потребление
энергии.

Рисунок 1. Сигнал на входе импульсного
металлоискателя

Большинство практических конструкций импульсных
металлоискателей строятся либо по двухкатушечной схеме, либо по
однокатушечной схеме с дополнительным источником питания. В первом
случае прибор имеет раздельные приемную и излучающую катушки, что
усложняет конструкцию датчика. Во втором случае катушка в датчике одна, а
для усиления полезного сигнала используется усилитель, который питается
от дополнительного источника питания. Смысл такого построения
заключается в следующем – сигнал самоиндукции имеет более высокий
потенциал, чем потенциал источника питания, который используется для
подачи тока в передающую катушку. Поэтому для усиления такого сигнала
усилитель должен иметь собственный источник питания, потенциал которого
должно быть выше напряжения усиливаемого сигнала. Это также усложняет
схему прибора.

Предлагаемая однокатушечная конструкция построена
по оригинальной схеме, которая лишена приведенных выше недостатков.

Технические характеристики

Напряжение питания ……………….7.5 – 14 (В)

Потребляемый ток не более ……..….90 (мА)

Глубина обнаружения:

– монета диаметром 25 мм ….…….…. 20 (см)

– пистолет ………………………..………40 (см)

– каска ……………………………..…….. 60 (см)

Структурная схема металлоискателя изображена на
рис.2 Основой устройства является микроконтроллер. С его помощью
осуществляется формирование временных интервалов для управления всеми
узлами устройства, а также индикация и общее управление прибором. С
помощью мощного ключа производится импульсное накопление энергии в
катушке датчика, а затем прерывание тока, после которого возникает
импульс самоиндукции, возбуждающий электромагнитное поле в мишени.



Рисунок 2. Структурная схема импульсного
металлоискателя

“Изюминкой” предлагаемой схемы является применение
дифференциального усилителя во входном каскаде. Он служит для усиления
сигнала, напряжение которого выше напряжения питания и привязке его к
определенному потенциалу – + 5 (В). Для дальнейшего усиления служит
приемный усилитель с большим коэффициентом усиления. Для измерения
полезного сигнала служит первый интегратор. Во время прямого
интегрирования производится накопление полезного сигнала в виде
напряжения, а во время обратного интегрирования производится
преобразование результата в длительность импульса. Второй интегратор
имеет большую постоянную интегрирования и служит для балансировки
усилительного тракта по постоянному току.

Принципиальная схема простого импульсного
металлоискателя изображена на рис.3.



Рисунок 3. Принципиальная электрическая схема
простого импульсного металлоискателя

Предложенная конструкция прибора разработана
полностью на импортной элементной базе. Использованы самые
распространенные компоненты ведущих производителей. Некоторые
элементы можно попытаться заменить на отечественные, об этом будет
сказано ниже. Большинство примененных элементов не являются дефицитными и
могут быть приобретены в больших городах России и СНГ через фирмы,
торгующие электронными компонентами.

Дифференциальный усилитель собран на ОУ
D1.1. Микросхема D1 представляет собой счетверенный операционный
усилитель типа TL074. Его отличительными свойствами являются высокое
быстродействие, малое потребление, низкий уровень шумов, высокое входное
сопротивление, а также возможность работы при напряжениях на входах,
близких к напряжению питания. Эти свойства и обусловили его применение в
дифференциальном усилителе в частности и в схеме в целом. Коэффициент
усиления дифференциального усилителя составляет около 7 и определяется
номиналами резисторов R3, R6…R9, R11.

Приемный усилитель D1.2 представляет собой
неинвертирующий усилитель с коэффициентом усиления 57. Во время действия
высоковольтной части импульса самоиндукции этот коэффициент снижается
до 1 с помощью аналогового ключа D2.1. Это предотвращает перегрузку
входного усилительного тракта и обеспечивает быстрое вхождение в режим
для усиления слабого сигнала. Транзисторы VT3 и VT4 предназначены для
согласования уровней управляющих сигналов, подаваемых с микроконтроллера
на аналоговые ключи.

С помощью второго интегратора D1.3
производится автоматическая балансировка входного усилительного тракта
по постоянному току. Постоянная интегрирования 240 (мс) выбрана
достаточно большой, чтобы эта обратная связь не влияла на усиление
быстро изменяющегося полезного сигнала. С помощью этого интегратора на
выходе усилителя D1.2 при отсутствии сигнала поддерживается уровень +5
(В).

Измерительный первый интегратор выполнен на
D1.4. На время интегрирования полезного сигнала открывается ключ D2.2
и, соответственно, закрывается ключ D2.4. На ключе D2.3 реализован
логический инвертор. После завершения интегрирования сигнала ключ D2.2
закрывается и открывается ключ D2.4. Накопительный конденсатор C6
начинает разряжаться через резистор R21. Время разряда будет
пропорционально напряжению, которое установилось на конденсаторе C6 к
концу интегрирования полезного сигнала. Это время измеряется с помощью микроконтроллера ,
который осуществляет аналого-цифровое преобразование. Для измерения
времени разряда конденсатора C6 используются аналоговый компаратор и
таймеры, которые встроены в микроконтроллер D3.

Кнопка S1 предназначена для начального сброса
микроконтроллера. С помощью переключателя S3 задается режим индикации
устройства. С помощью переменного резистора R29 регулируется
чувствительность металлоискателя.

С помощью светодиодов VD3…VD8 производится световая
индикация
.

Алгоритм функционирования

Для разъяснения принципа работы описываемого
импульсного металлоискателя на рис.4 приведены осциллограммы сигналов в
наиболее важных точках прибора.


Рисунок 4. Осциллограммы

На время интервала A открывается ключ VT1. Через
катушку датчика начинает протекать пилообразный ток – осциллограмма 2.
При достижении величины тока около 2(А) ключ закрывается. На стоке
транзистора VT1 возникает выброс напряжения самоиндукции –
осциллограмма 1. Величина этого выброса – более 300 Вольт (!) и
ограничивается резисторами R1, R3. Для предотвращения перегрузки
усилительного тракта служат ограничительные диоды VD1, VD2. Также для
этой цели на время интервала A (накопление энергии в катушке) и
интервала B (выброс самоиндукции) открывается ключ D2.1. Это снижает
сквозной коэффициент усиления тракта с 400 до 7. На осциллограмме 3
показан сигнал на выходе усилительного тракта (вывод 8 D1.2). Начиная с
интервала C, ключ D2.1 закрывается и коэффициент усиления тракта
становится большим. После завершения защитного интервала C, за время
которого усилительный тракт входит в режим, открывается ключ D2.2 и
закрывается ключ D2.4 – начинается интегрирование полезного сигнала –
интервал D. По истечении этого интервала ключ D2.2 закрывается, а ключ
D2.4 открывается – начинается “обратное” интегрирование. За это время
(интервалы E и F) конденсатор C6 полностью разряжается. С помощью
встроенного аналогового компаратора микроконтроллер отмеряет величину
интервала E, которая оказывается пропорциональной уровню входного
полезного сигнала. Для текущих версий микропрограммного обеспечения
установлены следующие значения интервалов:

A – 60…200 мкс, B – 12 мкс, С – 8 мкс, D – 50
(мкс), A + B + C + D + E + F – 5 (мс) – период повторения.

Микроконтроллер обрабатывает полученные цифровые
данные и индицирует с помощью светодиодов VD3…VD8 и излучателя звука Y1
степень воздействия мишени на датчик. Светодиодная индикация
представляет собой аналог стрелочного индикатора – при отсутствии
мишени горит светодиод VD8, далее в зависимости от уровня воздействия
последовательно загораются VD7, VD6 и т.д.

Щелкните по картинке для увеличения

Рисунок 5. Принципиальная схема второй
усовершенствованной версии микропроцессорного импульсного
металлоискателя

Отличия (рис.5) от первой версии прибора (рис.3)
состоят в следующем.

1. Добавлен резистор R30. Это сделано для того,
чтобы снизить влияние внутреннего сопротивления различных батарей на
настройку прибора. Теперь можно безболезненно менять кислотный
аккумулятор на 6-8шт солевых батарей. Настройка прибора при этом не
“съедет”.

2. Добавлены “ускоряющие” конденсаторы
C15,C16,C17. Благодаря этому существенно улучшилась термостабильность
схемы. В старой схеме ключи VT2…VT4 были самым уязвимым местом в этом
плане. Плюс к этому в программу добавлена непрерывная автобалансировка
нуля.

3. Добавлена цепь R31 , R32, C14 . Эта цепь
позволяет непрерывно контролировать состояние аккумуляторной батареи. С
помощью резистора R32 теперь можно выставить любой порог безопасной(для
аккумулятора) разрядки аккумуляторов различных типов. Например, для 8шт
NiCd или NiMH аккумуляторных батарей типа АА нужно будет установить
уровень 8 Вольт, а для 12 В кислотного аккумулятора – 11 Вольт… Когда
будет достигнут пороговый уровень, будет включена световая и звуковая
индикация.

Настраивается этот режим просто. Прибор
запитывается от блока питания. На блоке питания выставляется требуемое
пороговое напряжение, движок резистора R32 сначала ставится в “верхнее”
по схеме положение., а затем, вращая ротор резистора R32, нужно добиться
срабатывания индикации – светодиод VD8 начнет мигать, источник звука
будет издавать прерывистый сигнал. Из этого режима прибор выходит только
по сбросу.

4. В качестве альтернативного устройства индикации
теперь можно использовать двухстрочный шестнадцатисимвольный ЖКИ. Этот
режим включается при замыкании переключателя S3. В этом случае
сигнальные выводы ЖКИ подключаются согласно схемы вместо светодиодов.
Также на модуль ЖКИ необходимо подать напряжение +5 В и подключить
“земляной” провод. Резистор R33 монтируется непосредственно на контактах
модуля ЖКИ (рис.6).

Рисунок 6. Альтернативный ЖКИ – индикатор

В этом случае в верхней строке всегда индицируется
название металлоискателя, а в нижней строке в зависимости от режима:
“Autotuning”, “Low battery”. В режиме поиска в этой строке рисуется
столбец на 16 градаций уровня сигнала. При этом звуковой сигнал тоже
имеет 16 градаций тона.

Типы деталей и конструкция

Вместо операционного усилителя D1 TL074N можно
попробовать применить TL084N.

Микросхема D2 – это счетверенный аналоговый ключ
типа CD4066, который можно заменить на отечественную микросхему К561КТ3.

Микроконтроллер D4 AT90S2313-10PI прямых аналогов
не имеет. В схеме не предусмотрены цепи для его внутрисхемного
программирования, поэтому контроллер желательно устанавливать на
панельку, чтобы его можно было перепрограммировать.

Транзистор VT1 типа IRF740 можно попробовать
заменить на IRF840.

Транзисторы VT2…VT4 типа 2N5551 можно заменить на
КТ503 с любым буквенным индексом. Однако следует обратить внимание на
тот факт, что они имеют другую цоколевку.

Светодиоды могут быть любого типа, VD8 желательно
взять другого цвета свечения. Диоды VD1,VD2 типа 1N4148.

Резисторы могут быть любых типов, R1 и R3 должны
иметь рассеиваемую мощность 0,5 (Вт), остальные могут быть 0,125 или
0,25 (Вт). R9 и R11 желательно подобрать, чтобы их сопротивление
отличалось не более, чем на 5%.

Конденсатор C1 – электролитический, на напряжение
16В, остальные конденсаторы керамические.

Кнопка S1, переключатели S3,S4, переменный
резистор R29 могут быть любых типов, которые подходят по габаритам. В
качестве источника звука можно использовать пъезоизлучатель или головные
телефоны от плеера.

Конструкция корпуса прибора может быть
произвольной. Штанга вблизи датчика (до 1 метра) и сам датчик не должны
иметь металлических деталей и элементов крепления. В качестве исходного
материала для изготовления штанги удобно использовать пластиковую
телескопическую удочку.

Датчик содержит 27 витков провода диаметром 0,6 –
0,8 мм, намотанного на оправке 190 (мм). Датчик не имеет экрана и его
крепление к штанге должно осуществляться без применения массивных
шурупов, болтов и т.д. (!) Для соединения датчика и электронного блока
нельзя использовать экранированный кабель из-за его большой емкости. Для
этих целей надо использовать два изолированных провода, например типа
МГШВ, свитых вместе.

Налаживание прибора

ВНИМАНИЕ! В приборе имеется высокое,
потенциально опасное для жизни напряжение – на коллекторе VT 1 и
на датчике. Поэтому при настройке и эксплуатации следует соблюдать меры
электробезопасности.

1. Убедиться в правильности монтажа.

2. Подать питание и убедиться, что потребляемый
ток не превышает 100 (мА).

3. С помощью подстроечного резистора R7 добиться
такой балансировки усилительного тракта, чтобы осциллограмма на выводе 7
D1.4 соответствовала осциллограмме 4 на рис.4. При этом необходимо
следить за тем, чтобы сигнал в конце интервала D был неизменным, т.е.
осциллограмма в этом месте должна быть горизонтальной.

В дальнейшей настройке правильно собранный прибор
не нуждается. Необходимо поднести датчик к металлическому объекту и
убедиться в работе органов индикации. Описание работы органов управления
приводится ниже, в описании программного обеспечения.

Программное обеспечение

На момент написания этой статьи было разработано и
протестировано программное обеспечение версий V1.0-demo, V1.1 для
первой версии прибора и V2.4-demo, V2.4 для второй версии. Демо-версия
программы полностью работоспособна и отличается только отсутствием
точной регулировки чувствительности. Полные версии поставляются в уже
прошитых микроконтроллерах, входящих в состав набора МАСТЕР КИТ NM8042 .
HEX файл прошивок V1.0-demo и V2.4-demo можно скачать здесь .

Работа над новыми версиями программного
обеспечения продолжается, планируется введение дополнительных режимов.
Новые версии, после их всестороннего тестирования, будут доступны в
наборах МАСТЕР КИТ. Получить информацию о новых версиях, а также скачать
демонстрационные версии программ для самостоятельного изготовления
металлоискателя можно на персональной страничке Юрия Колоколова и
на нашем сайте.

Работа с прибором

В начале работы необходимо включить питание
прибора, поднять датчик на уровень 60-80 см от грунта и нажать на кнопку
“Сброс”. В течении 2-х секунд прибор произведет автонастройку. По
окончании автонастройки прибор издаст характерный короткий звук. После
этого датчик необходимо приблизить к грунту (в месте, где отсутствуют
металлические предметы) на расстояние 3-7 см и отрегулировать
чувствительность с помощью резистора R29. Ручку необходимо вращать до
исчезновения ложных откликов. После этого можно приступать к поискам.
При появлении индикации разряда батарей поиски необходимо прекратить,
выключить прибор и заменить источник питания.

Заключение

Чтобы сэкономить время и избавить Вас от рутинной
работы по поиску необходимых компонентов и изготовлению печатных плат
МАСТЕР КИТ предлагает набор NM8042 .

На рис. 7 приведен рисунок печатной платы (для
схемы рис. 3) и расположение компонентов на ней.

Рисунок 7.1. Вид печатной платы сверху

Рисунок 7.2. Вид печатной платы снизу

Набор состоит из заводской печатной платы,
прошитого контроллера с версией программы V 1.1, всех необходимых
компонентов, пластикового корпуса и инструкции по сборке и эксплуатации.
Конструктивные упрощения были сделаны сознательно, с целью уменьшения
стоимости набора.

Изготовление поисковой катушки

Катушка представляет собой 27 витков
эмалированного провода сечением 0,7-0,8 мм, намотанных в виде кольца
180-190 мм. После намотки катушки витки необходимо обмотать изоляционной
лентой. Для подключения датчика необходимо изготовить витую пару из
монтажного провода. Для этого берется два куска провода нужной длины, и
свиваются вместе из расчета одна скрутка на сантиметр. С одной стороны
этот кабель подпаивается к катушке, с другой к плате. Корпус датчика и
штанга металлоискателя не должны содержать металлических деталей!

Доработка корпуса

Перед установкой платы металлоискателя в корпус, в
нем необходимо сделать отверстия под выносные элементы.

На рис.8 показаны отверстия на передней
панели под светодиоды, регулятор чувствительности R29, выключатель
питания S4 и кнопку сброса S1. На рис.9 – отверстие на боковой
поверхности корпуса под телефонный разъем Earphone JACK. На рис.10
– отверстия на задней панели под кабель питания и под кабель поисковой
катушки.

Внешний вид собранной электронной начинки показан
на рис. 11 .

Рисунок 8. Отверстия на передней панели корпуса под светодиоды

Рисунок 9. Отверстие на боковой поверхности
корпуса под телефонный разъем

Рисунок 10. Отверстия на задней панели под кабель
питания и под кабель поисковой катушки

Рисунок 11. Внешний вид электронной начинки
микропроцессорного импульсного металлоискателя из набора МАСТЕР КИТ NM8042

Более подробно ознакомиться с ассортиментом нашей
продукции можно с помощью каталога “МАСТЕР КИТ” и на нашем сайте, где
представлено много полезной информации по электронным наборам и модулям
МАСТЕР КИТ, приведены адреса магазинов, где их можно купить.

Металлодетекторы глубинного типа способны обнаружить предметы в грунте на большом расстоянии. Современные модификации в магазинах стоят довольно дорого. Однако в данном случае можно попробовать изготовить металлодетектор своими руками. С этой целью в первую очередь рекомендуется ознакомиться с конструкцией стандартной модификации.

Схема модификации

Собирая металлодетектор своими руками (схема показана ниже), нужно помнить, что основными элементами устройства являются демпфер на микроконтроллере, конденсатор и ручка с держателем. Блок управления в устройствах состоит из набора резисторов. Некоторые модификации производятся на приводных модуляторах, которые работают при частоте 35 Гц. Непосредственно стойки выполнены с узкими и широкими пластинами тарельчатой формы.

Инструкция по сборке простой модели

Собрать металлодетектор своими руками довольно просто. В первую очередь рекомендуется заготовить трубку и приделать к ней ручку. Для установки потребуются резисторы высокой проводимости. Рабочая частота устройства зависит от многих факторов. Если рассматривать модификации на диодных конденсаторах, то у них высокая чувствительность.

Рабочая частота таких металлоискателей составляет около 30 Гц. Максимальное расстояние обнаружения предмета у них равняется 25 мм. Работать модификации способны на батарейках литиевого типа. Микроконтроллеры для сборки потребуются с полярным фильтром. Многие модели складываются на датчиках открытого типа. Также стоит отметить, что эксперты не рекомендуют использовать фильтры высокой чувствительности. Они сильно снижают точность обнаружения металлических предметов.

Модель серии "Пират"

Сделать металлодетектор "Пират" своими руками можно только на базе проводного контроллера. Однако в первую очередь для сборки заготавливается микропроцессор. Для его подключения понадобится Многие эксперты рекомендуют применять сеточные конденсаторы с емкостью 5 пФ. Проводимость у них должна поддерживаться на уровне 45 мк. После можно приступать к пайке блока управления. Стойка должна быть прочной и выдерживать вес пластины. Для моделей на 4 В не рекомендуются применять тарелки диаметром более 5,5 см. Индикаторы системы не обязательно устанавливать. После закрепления блока останется лишь установить батарейки.

Использование рефлекторных транзисторов

Сделать с рефлекторными транзисторами металлодетектор своими руками довольно просто. В первую очередь эксперты рекомендуют заняться установкой микроконтроллера. Конденсаторы в данном случае подойдут трехканального типа, а проводимость у них не должна превышать 55 мк. При напряжении 5 В они обладают сопротивлением примерно 35 Ом. Резисторы у модификаций применяются в основном контактного типа. Они обладают отрицательной полярностью и хорошо справляются с электромагнитными колебаниями. Также стоит отметить, что при сборке разрешается использовать Максимальная ширина пластины для такой модификации равняется 5,5 см.

Модель с конвекционными транзисторами: отзывы специалистов

Собрать металлодетектор своими руками можно только на базе коллекторного контроллера. При этом конденсаторы используются на 30 мк. Если верить отзывам экспертов, то лучше не стоит применять мощные резисторы. В данном случае максимальная емкость элементов должна составлять 40 пФ. После установки контроллера стоит заняться блоком управления.

Данные металлоискатели получают хорошие отзывы за надежную защиту от волновых помех. С этой целью используется два фильтра диодного типа. Модификации с системами индикации очень редко встречаются среди самодельных модификаций. Также стоит отметить, что блоки питания должны работать при низком напряжении. Таким образом, батарея долго прослужит.

Использование хроматических резисторов

Своими руками? Модель с хроматическими резисторами собрать довольно просто, но следует учитывать, что конденсаторы для модификаций разрешается применять лишь на предохранителях. Также эксперты указывают на несовместимость резисторов с проходными фильтрами. Перед началом сборки важно сразу заготовить для модели трубку, которая будет ручкой. Затем устанавливается блок. Целесообразнее подбирать модификации на 4 мк, которые работают при частоте 50 Гц. У них малый коэффициент рассевания и высокая точность измерения. Также стоит отметить, что искатели данного класса смогут успешно работать в условиях повышенной влажности.

Модель с импульсным стабилитроном: сборка, отзывы

Устройства с импульсными стабилитронами выделяются высокой проводимостью. Если верить отзывам специалистов, то самодельные модификации способны работать с предметами разного размера. Если говорить про параметры, то точность обнаружения у них равняется примерно 89 %. Начинать сборку устройства стоит с заготовки стойки. Затем монтируется ручка для модели.

Следующим шагом устанавливается блок управления. Затем монтируется контроллер, который работает от литиевых батарей. После установки блока можно заняться пайкой конденсаторов. Отрицательное сопротивление у них не должно превышать 45 Ом. Отзывы экспертов указывают на то, что модификации данного типа можно производить без фильтров. Однако стоит учитывать, что у модели будут серьезные проблемы с волновыми помехами. При этом будет страдать конденсатор. В итоге батарея у моделей данного типа быстро разряжается.

Применение низкочастотного трансивера

Низкочастотные трансиверы у моделей значительно снижают точность работы приборов. Однако стоит отметить, что модификации данного типа способны успешно работать с предметами небольшого размера. При этом у них малый параметр саморазряда. Для того чтобы собрать модификацию своими руками, рекомендуется воспользоваться проводным контроллером. Передатчик чаще всего используется на диодах. Таким образом, проводимость обеспечивается на отметке в 45 мк при чувствительности 3 мВ.

Некоторые эксперты рекомендуют устанавливать сеточные фильтры, которые повышают защищенность моделей. Для поднятия проводимости используются модули только переходного типа. Основными недостатками таких устройств считается перегорание контроллера. При такой поломке проблематично сделать ремонт металлодетектора своими руками.

Использование высокочастотного трансивера

На высокочастотных трансиверах собрать простой металлодетектор своими руками можно только на базе переходного контроллера. Перед началом установки стандартно заготавливается стойка под пластину. Проводимость контроллера в среднем равняется 40 мк. Многие специалисты не используют при сборке контактные фильтры. У них высокие тепловые потери, и они способы работать при частоте 50 Гц. Также стоит отметить, что для сборки металлоискателя используются литиевые батарейки, которые подзаряжают блок управления. Непосредственно датчик у модификаций устанавливается через конденсатор, у которого емкость не должна превышать 4 пФ.

Модель с продольным резонатором

На рынке часто встречаются устройства с продольными резонаторами. Они выделяются среди своих конкурентов высокой точностью определения предметов, и при этом могут работать при повышенной влажности. Для того чтобы самостоятельно собрать модель, заготавливается стойка, а тарелку стоит применять диаметром не менее 300 мм.

Также стоит отметить, что для сборки устройства потребуется контактный котроллер, и один расширитель. Фильтры используются лишь на сеточной подкладке. Многие специалисты рекомендуют устанавливать диодные конденсаторы, которые работают при напряжении 14 В. В первую очередь они мало разряжают батарею. Также стоит отметить, что они обладают хорошей проводимостью по сравнению с полевыми аналогами.

Использование селективных фильтров

Сделать такой глубинный металлодетектор своими руками не просто. Основная проблема заключается в том, что в устройство нельзя установить обычный конденсатор. Также стоит отметить, что пластина для модификации подбирается размером от 25 см. В некоторых случаях стойки устанавливаются с расширителем. Многие эксперты советуют начинать сборку с установки блока управления. Он обязан работать при частоте не более 50 Гц. При этом проводимость зависит от контроллера, который используется в оборудовании.

Довольно часто его подбирают с обкладкой для повышения защищенности модификации. Однако такие модели часто перегреваются, и не способны работать с высокой точностью. Для решения данной проблемы рекомендуется использовать обычные переходники, которые устанавливаются под конденсаторные блоки. Катушка для металлодетектора своими руками изготавливается из блока трансивера.

Применение контакторов

Контакторы в устройства устанавливаются вместе с блоками управления. Стойки для модификаций используются небольшой длины, а тарелки подбираются на 20 и 30 см. Некоторые эксперты говорят о том, что устройства стоит собирать на импульсных переходниках. При этом конденсаторы можно использовать низкой емкости.

Также стоит отметить, что после установки блока управления стоит припаять фильтр, который способен работать при напряжении 15 В. В данном случае у модели будет поддерживаться проводимость на уровне 13 мк. Трансиверы чаще всего используются на переходниках. Перед включением металлоискателя на контакторе проверяется уровень отрицательного сопротивления. Указанный параметр в среднем равняется 45 Ом.