Лучшие открытия и изобретения. Самые известные изобретатели. Открытие из прошлого

В 1908—1911 годах построил свои первые два простейших вертолёта. Грузоподъёмность построенного в сентябре 1909 года аппарата достигала 9 пудов. Ни один из построенных вертолётов не смог взлететь с пилотом, и Сикорский переключился на постройку самолётов.

Аэропланы Сикорского завоевывали главные призы на состязании военных самолетов

В 1912—1914 годах создал в Петербурге самолёты «Гранд» (Русский витязь), «Илья Муромец», положившие начало многомоторной авиации. 27 марта 1912 года на биплане «С-6» Сикорскому удалось установить мировые рекорды скорости: с двумя пассажирами на борту — 111 км/ч, с пятью — 106 км/ч. В марте 1919 года Сикорский эмигрировал в США, поселился в районе Нью-Йорка.

Первый экспериментальный вертолёт Vought-Sikorsky 300, созданный Сикорским в США, оторвался от земли 14 сентября 1939 года. По существу, это был модернизированный вариант его первого российского вертолёта, созданного ещё в июле 1909 года.

На его вертолётах были впервые совершены перелёты через Атлантический и Тихий океаны (с дозаправкой в воздухе). Машины Сикорского применялись как для военных, так и для гражданских целей.

Он является создателем первой точно датированной печатной книги «Апостол» в Русском царстве, а также основатель типографии в Русском воеводстве Польского королевства.

Иван Федоров по традиции называется «первым русским книгопечатником»

В 1563 году по приказу Иоанна IV в Москве был устроен дом — Печатный двор, который царь щедро обеспечил от своей казны. В нём был напечатан Апостол (книга, 1564).

Первой печатной книгой, в которой указано имя Ивана Фёдорова (и помогавшего ему Петра Мстиславца ), стал именно «Апостол», работа над которым велась, как указано в послесловии к нему, с 19 апреля 1563 года по 1 марта 1564 года. Это — первая точно датированная печатная русская книга. На следующий год в типографии Фёдорова вышла его вторая книга, «Часовник».

Через некоторое время начались нападки на печатников со стороны профессиональных переписчиков, чьим традициям и доходу типография угрожала. После поджога, уничтожившего их мастерскую, Фёдоров со Мстиславцем уехали в Великое княжество Литовское.

Сам Иван Фёдоров пишет, что ему в Москве пришлось претерпеть очень сильное и частое озлобление по отношению к себе не от царя, а от государственных начальников, священноначальников и учителей, которые завидовали ему, ненавидели его, обвиняли Ивана во многих ересях и хотели уничтожить Божие дело (то есть книгопечатание). Эти люди и выгнали Ивана Фёдорова из его родного Отечества, а Ивану пришлось переселиться в другую страну, в которой он никогда не был. В этой стране Ивана, как он сам пишет, его любезно принял благочестивый король Сигизмунд II Август вместе со своей радою.

Русский физик и электротехник, профессор, изобретатель, статский советник, Почётный инженер-электрик. Изобретатель радио.

Деятельность А. С. Попова, предшествовавшая открытию радио — это исследования в области электротехники, магнетизма и электромагнитных волн.

7 мая 1895 г. на заседании Русского физико-химического общества Попов выступил с докладом и демонстрацией созданного им первого в мире радиоприемника. Свое сообщение Попов закончил следующими словами: «В заключение могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применен к передаче сигналов на расстояние при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающих достаточной энергией ».

24 марта 1896 г. Попов передал первую в мире радиограмму на расстояние в 250 м., а в 1899 г. он сконструировал приемник для приема сигналов на слух при помощи телефонной трубки. Это дало возможность упростить схему приема и увеличить дальность радиосвязи.

Первая радиограмма, переданная А. С. Поповым на остров Гогланд 6 февраля 1900 г., содержала приказание ледоколу «Ермак» выйти на помощь рыбакам, унесенным на льдине в море. Ледокол выполнил приказ, и 27 рыбаков были спасены. Попов осуществил первую в мире линию радиосвязи на море, создал первые походные армейские и гражданские радиостанции и успешно провел работы, доказавшие возможность применения радио в сухопутных войсках и в воздухоплавании.

За два дня до смерти А. С. Попова избрали председателем физического отделения Русского физико-химического общества. Этим избранием русские ученые подчеркнули огромные заслуги А. С. Попова перед отечественной наукой.

Братья Черепановы

В 1833—1834 гг., они создали первый в России паровоз, а затем в 1835 году — второй, более мощный.

В 1834 г., на Выйском заводе, который входил в состав Нижнетагильских заводов Демидова, русский механик Мирон Ефимович Черепанов с помощью своего отца Ефима Алексеевича построили целиком из отечественных материалов первый в России паровоз. В обиходе тогда еще не существовало этого слова, и локомотив назвали «сухопутным пароходом». Сегодня модель первого русского паровоза типа 1−1−0, построенного Черепановыми, хранится в Центральном музее железнодорожного транспорта в Санкт-Петербурге.

Первый паровоз имел массу в рабочем состоянии 2,4 т. Его опытные поездки начались в августе 1834 г. Изготовление второго паровоза закончили в марте 1835 г. Второй паровоз мог перевозить грузы уже массой 1000 пудов (16,4 т) со скоростью до 16 км/ч.

Черепановым было отказано в патенте на паровоз, потому что он «зело вонюч»

К сожалению, в отличие от стационарных паровых двигателей, востребованных в то время российской промышленностью, первой русской железной дороге Черепановых не было уделено того внимания, которого она заслуживала. Разысканные ныне чертежи и документы, характеризующие деятельность Черепановых, свидетельствуют, что это были истинные новаторы и высокоодаренные мастера техники. Они создали не только Нижнетагильскую железную дорогу и ее подвижной состав, но и сконструировали много паровых машин, металлообрабатывающих станков, построили паровую турбину.

Русский электротехник, один из изобретателей лампы накаливания.

Что касается лампы накаливания, то у нее нет одного-единственного изобретателя. История лампочки представляет собой целую цепь открытий, сделанных разными людьми в разное время. Однако заслуги Лодыгина в создании ламп накаливания особенно велики. Лодыгин первым предложил применять в лампах вольфрамовые нити (в современных электрических лампочках нити накала именно из вольфрама ) и закручивать нить накаливания в форме спирали. Также Лодыгин первым стал откачивать из ламп воздух, чем увеличил их срок службы во много раз. И еще, именно им была выдвинута идея о наполнении лампочек инертным газом.

Лодыгин является создателем проекта автономного водолазного скафандра

В 1871 году Лодыгин создал проект автономного водолазного скафандра с использованием газовой смеси, состоящей из кислорода и водорода. Кислород должен был вырабатываться из воды путём электролиза, а 19 октября 1909 года он получил патент на индукционную печь.

Андрей Константинович Нартов (1693—1756)

Изобретатель первого в мире токарно-винторезного станка с механизированным суппортом и набором сменных зубчатых колёс.

Нартов разработал конструкцию первого в мире токарно-винторезного станка с механизированным суппортом и набором сменных зубчатых колёс (1738). Впоследствии это изобретение было забыто и токарно-винторезный станок с механическим суппортом и гитарой сменных зубчатых колес заново изобрел около 1800 г. Генри Модели.

В 1754 году А. Нартов был произведен в генеральский чин статского советника

Работая в Артиллерийском ведомстве, Нартов создал новые станки, оригинальные запалы, предложил новые способы отливки пушек и заделки раковин в канале орудия и др. Им был изобретен оригинальный оптический прицел. Значение изобретений Нартова был столь велико, что 2 мая 1746 года был издан указ о награждении А. К. Нартова за артиллерийские изобретения пятью тысячами рублей. Кроме этого, ему отписали несколько деревень в Новгородском уезде.

Борис Львович Розинг (1869—1933)

Российский физик, учёный, педагог, изобретатель телевидения, автор первых опытов по телевидению, за которые Русское техническое общество присудило ему золотую медаль и премию имени К. Г. Сименса

Он рос живым и любознательным, успешно учился, увлекался литературой и музыкой. Но жизнь его оказалась связанной отнюдь не с гуманитарными направлениями деятельности, а с точными науками. После окончания физико-математического факультета Петербургского университета Б. Л. Розинг увлекся идеей передачи изображения на расстояние.

К 1912 году Б. Л. Розинг разрабатывает все основные элементы современных черно-белых телевизионных трубок. О его работах в то время стало известно во многих странах, и его патент на изобретение был признан в Германии, Великобритании и США.

Русский изобретатель Б. Л. Розинг является изобретателем телевидения

В 1931 году был арестован по «делу академиков» «за финансовую помощь контрреволюционерам» (дал денег в долг приятелю, впоследствии арестованному) и сослан на три года в Котлас без права работы. Однако, благодаря заступничеству советской и зарубежной научной общественности, в 1932 году переведён в Архангельск, где поступил на кафедруфизики Архангельского лесотехнического института. Там и умер 20 апреля 1933 года в возрасте 63 лет от кровоизлияния в мозг. 15 ноября 1957 года Б. Л. Розинг был полностью оправдан.

Об изобретательстве понятным языком и на интересных примерах Соколов Дмитрий Юрьевич

Глава 5 Великие изобретатели и их изобретения

Mens ogitat molen.

Ум двигает материю.

(Из Вергилия)

В предыдущей главе были сформулированы основные принципы изобретательства, основанные на высказываниях великих изобретателей. В этой главе, учитывая их изобретательский опыт, мы вместе с ними попробуем дополнить эти принципы.

Первым из великих изобретателей всех времен и народов многие считают Архимеда (287–212 гг. до н. э.), родившегося в Сиракузах на острове Сицилия. По оценке П.С. Кудрявцева, Архимед был также очень крупным представителем «математической физики или, вернее, физической математики» . Это сочетание науки и ее воплощения в технику позволило ему занять заслуженное место в истории человечества. Всем известен закон Архимеда о выталкивающей силе жидкости, которая равна весу ее вытесненного объема, и его приложение в качестве способа выявления драгоценных металлов (рис. 5.1). Другие известные его изобретения относятся к военной области и в основном используют «принцип рычага», хотя рычаг уже применялся в Древнем Египте. Греческий историк Плутарх писал: «При атаке римлян… Архимед пустил в ход свои машины. Сухопутная армия была поражена градом метательных снарядов и громадных камней, бросаемых с великой стремительностью. Ничто не могло противостоять их удару, они все низвергали перед собой и вносили смятение в ряды. Что касается флота – то вдруг с высоты стен бревна опускались вследствие своего веса и приданной скорости на суда и топили их. То железные когти и клювы захватывали суда, поднимали их в воздух носом вверх, кормою вниз и погружали в воду. А то суда приводились во вращение и, кружась, попадали на подводные камни и утесы у подножия стен… Страшное зрелище!…» .

Рис. 5.1. Архимед («Эврика»). Иллюстрация к базельскому изданию «Десять книг по архитектуре» Витрувия. 1575 год

Однако изобретенное им оружие не спасло Архимеда от гибели при взятии Римом Сиракуз, он вошел в историю как один из первых ученых, работавших на войну, и оказавшийся ее жертвой. Когда были взяты Сиракузы, завоеватели хотели сохранить Архимеду жизнь. Солдаты, вошедшие в дом Архимеда, спросили, кто он такой (Архимед в это время работал над чертежами). Вместо ответа на простой вопрос, он закрыл чертежи руками со словами «Noli turbare circulos meos» (не прикасайся к моим кругам), после чего был убит.

Жизнь и творчество Архимеда показывает, что, будучи одновременно ученым и изобретателем, можно добиться максимальных успехов в обеих областях. А последний трагический пример показывает, насколько бывают важны для ученого его научные достижения. Выделив Архимеда особо, как первого из великих, продолжим перенимать опыт.

Галилео Галилей (1564–1642) свое первое открытие постоянства частоты колебаний маятника при одинаковой длине подвеса сделал в двадцатилетием возрасте, когда наблюдал в соборе Пизы за качанием люстр. . При этом отсчет времени он вел по биению своего пульса и ритму музыки. Вернувшись домой, он использовал два свинцовых шара разной массы, подвешенных на нитях одинаковой длины, а также маятники из других материалов, исключая самый легкий, для которого сказывается сопротивление воздуха. Все эти эксперименты подтвердили его первоначальные догадки. Строго говоря, это не изобретение, а открытие, но пристальное наблюдение за окружающим миром очень важно и для ученого, и для изобретателя.

Преемником Галилея в науке считают Христиана Гюйгенса (1629–1695). Используя открытые Галилеем законы маятника, он сделал уже полноценное изобретение в виде маятниковых часов. Совершенствованием этих часов Гюйгенс занимался почти 40 лет, за что был назван самым гениальным часовщиком всех времен. Следовательно, чтобы заслужить благодарность потомков, надо иногда потратить очень много времени на решение одного вопроса. Тут же заметим, что из всех великих предшественников Гюйгенс особенно выделял Архимеда.

Михаил Васильевич Ломоносов (1711–1765) наряду с открытиями, опередившими свое время (например, молекулярно-кинетической теории тепла и физической химии – как науки), создал огромное количество изобретений в различных областях. Соединению науки с практикой для решения конкретных задач он придавал первостепенное значение. В первой химической лаборатории России, прообразе будущих научно-исследовательских институтов, в 1749–1751 годах им были созданы новые и найдены утерянные рецепты окрашивания стекол и специальной мозаичной массы – смальты . Одним из самых выдающихся изобретений Ломоносова была «ночезрительная труба» – прообраз созданных через двести лет ночных биноклей. Им были также изобретены: перископ, рефрактометр, пирометр, различные варианты барометров и многое другое. Кроме этого Ломоносовым были изобретены слова: маятник и созвездие. Пример Ломоносова подтверждает опыт Архимеда, показывая высокую эффективность и взаимовлияние научной и изобретательской деятельности.

Первое изобретение одного из самых крупных ученых XIX века Джеймса Клерка Максвелла (1831–1879) было сделано в 14-летнем возрасте после прослушанной им лекции в Эдинбургском королевском научном обществе, куда его иногда брал отец. Речь на ней шла о построении овалов, для чего в то время использовался сложный математический аппарат, разработанный Ньютоном и Декартом. Способ, изобретенный Максвеллом, заключается в том, что вокруг двух иголок, воткнутых в поверхность, оборачивается связанная ненатянутая нить, а по внутреннему ее контуру с натягом движется карандаш. Максвеллу повезло, профессор Д. Форбс доложил от его имени это изобретение в Эдинбургском обществе, и оно было по достоинству оценено учеными. Следует заметить, Максвелл уже тогда понял, что очень важно для изобретателя и ученого вовремя донести свои мысли до людей. Вместе с ним можно сформулировать принцип: «Работай, закончи, публикуй», который в настоящее время стал основополагающим для всех ученых и изобретателей.

Интересен пример Альфреда Нобеля (1833–1896), мотивация которого при изобретении динамита в 1867 году заключалась в том числе в достижении мира на земле. Он считал, что мощная взрывчатка, производящая огромные разрушения, устрашит человечество и устранит войны. Он даже на прибыли от продажи боеприпасов установил известную премию, в том числе за укрепление мира . Но Первая и Вторая мировые войны доказали ошибочность его предположения.

Как бы учитывая опыт Нобеля, ученый мир не заметил публикаций биолога и физика Лео Сцилларда в 1933 году и химика Иды Ноддак по поводу использования ядерной энергии. Возможно, это оттянуло изобретение ядерного оружия и сохранило человечество от массового уничтожения во время Второй мировой войны .

Злую шутку изобретательская активность сыграла со Львом Сергеевичем Терменом (1896–1993). Его изобретение, Термен-вокс, генерирующее звуки разной частоты в зависимости от положения ладоней оператора относительно антенны, в 1922 году было продемонстрировано В.И. Ленину и положительно им оценено. Благодаря этому в 1928 году Термен, как советский гражданин переехал в Америку для производства этих приборов, где по заданию советской разведки организовал фирму «Teletouch», под прикрытием которой работали многие наши разведчики. Однако в 1938 году Термена отозвали в Москву, где ему предъявили обвинение, что он из Америки, используя свои изобретения, должен быть послать радиосигнал на взрыв бомбы в маятнике Фуко Пулковской обсерватории в момент подхода к нему С.М. Кирова. Прошел изобретатель через сталинские лагеря, «шарашки», забвение и успех, а в конце жизни в 1991 году в возрасте 95 лет вступил в ряды КПСС, объяснив свой поступок тем, что обещал это Ленину . Приведенный пример подтверждает, что активность ума помогает выжить в экстремальных условиях и сохранить жизнелюбие и оптимизм. В доказательство этого Термен предлагал прочитать свою фамилию наоборот: «Термен – не мрет».

Закончить про великих изобретателей, которые в большинстве случаев были выдающимися учеными, хочется на противоположном примере Вольфганга Паули (1900–1958), выдающегося ученого, которого по шутливой классификации яркости таланта Л.Д. Ландау поставил в первый класс сразу после Эйнштейна, Бора, Ферми и Гайзенберга. Так вот, вторая шутливая классификация физиков-экспериментаторов гласит, что чем более значим физик-теоретик, тем менее он разбирается в практических вопросах и даже изобретенным кем-то приборам может нанести непоправимый вред. Когда в физической лаборатории Геттингена произошел взрыв, Джеймс Франк, заведующий этой лабораторией, установил, что в это самое время на вокзале в нескольких километрах от Геттингена останавливался поезд, в котором проездом оказался Паули. На основании этого Франк установил, что Паули является величайшим теоретиком всех времен . Заключение шуточное, тем не менее из всякого правила есть исключение, и не все выдающиеся ученые становятся изобретателями.

Почти все приведенные примеры помимо полезного опыта великих изобретателей, не потерявшего актуальность в настоящее время, подчеркивают также связь времен в науке и технике. Но более подробно об этом в следующей главе.

Литература

1. Кудрявцев П.С. Курс истории физики. – М.: Просвещение, 1982, с. 30–31.

2. Вавилов В.В. Первые шаги в науке. – Потенциал, 2010, № 8, с. 12–21.

3. Ишлинский А.Ю., Павлова Г.А. М.В. Ломоносов – великий русский ученый. – М.: Педагогика, 1986, с. 57–60.

4. Белявский М.Т. Все испытал и все проник. – М.: Издательство Московского университета, 1990. – 221с.

5. Пестов С. Второе пришествие: нанотехнология. – М. Зеленоград.: 1997, издательство «Стил». – 100с.

6. Гладун А.Б. Ровесник кванта. – Потенциал, 2010, № 7, с. 2–4.

7. Гладун А.Б. Ровесник кванта. – Потенциал, 2010, № 4, с. 2–3.

Из книги Трактат о вдохновенье, рождающем великие изобретения автора Орлов Владимир Иванович

ГЛАВА ПЕРВАЯ, где начинается неспешное обсуждение признаков, отличающих всякое изобретение; разговор идет о новизне, но прерывается горькими размышлениями о том, почему приобретатели богатеют, а изобретатели беднеют и разоряются; перед читателем возникают траурные

Из книги Что нас ждет, когда закончится нефть, изменится климат, и разразятся другие катастрофы автора Кунстлер Джеймс Говард

ГЛАВА ВТОРАЯ, где продолжается предыдущее обсуждение, чтобы утвердиться в выводе, что другим обязательным признаком всякого изобретения является его полезность, целесообразность; рассматриваются такие категории, как блажь, вред и польза, и показывается, как высокие

Из книги Четыре жизни академика Берга автора Радунская Ирина Львовна

Из книги Об изобретательстве понятным языком и на интересных примерах автора Соколов Дмитрий Юрьевич

ГЛАВА ДЕСЯТАЯ, где доказывается, что вдохновенье может нахлынуть из прошлого, что изобретатели иногда повторяют на новой головокружительно высокой ступени технические идеи минувших лет 10.1.Дания в эпоху наполеоновских войн на словах заявляла о своем нейтралитете, а на

Из книги Затворные системы «переломок» автора Маслов Юрий Анатольевич

ГЛАВА ДВЕНАДЦАТАЯ, где автор и читатель вместе перелистывают книги, в которых даются намеки и прямые обещания открыть секреты, как делать изобретения с той же легкостью, как решают математические задачи; в ходе чтения зарождается иллюзия, что уже существует методика

Из книги Алгоритм изобретения автора Альтшуллер Генрих Саулович

Из книги Россия - родина Радио. Исторические очерки автора Бартенев Владимир Григорьевич

Глава 3 СЛОЖНЫЙФАРВАТЕРС МЕРТВОЙ ТОЧКИКак будет развиваться дальше эта необычная и обыденная история? История, так похожая на те, что разыгрываются вокруг нас и с нами в повседневной и всегда такой неповторимой жизни.События в личной жизни Берга назревали.В наркомате

Из книги автора

Глава 2 Самые древние изобретения Vestra salus – nostra salus. Ваше благо – наше благо. По последним данным традиционной археологии, первое изобретение древнего человека – каменный нож (рубило), которым обитатели Северо-восточной Африки соскабливали мясо с костей животных. Эти

Из книги автора

Глава 3 Как рождаются изобретения Quot hominess tot sententiae. Сколько людей – столько мнений.Известный разработчик методик решения изобретательских задач Генрих Саулович Альтшуллер отмечал, что «изобретатели не очень охотно и не часто рассказывают о путях, которые их привели к

Из книги автора

Глава 7 Изобретатели и власть Inpatria natus non est prophet a vocatus. Нет пророка в своем отечестве. (Евангелие от Иоанна,4,44) Недавно по долгу службы оказавшись в одном известном техническом вузе Москвы, я решил зайти в библиотеку и полистать подшивки основных журналов для

Из книги автора

Глава 8 Что часто думают изобретатели друг о друге Abe ant studia in mores. Занятия налагают отпечаток на характер. Если ответить одним словом, то плохо и не только думают, но и говорят и даже делают. Поставьте себя на место изобретателя. Вы не один день решаете какую-то проблему,

Из книги автора

Глава 10 Другие интересные изобретения и составление их формул Faciant meliora potentes. Пусть сделает лучше тот, кто может. В этой главе рассмотрим составление формул для изобретений, которые благодаря своей оригинальности оставили след в истории изобретательства.Ученые долго

Из книги автора

Из книги автора

Диалектика изобретения Даже формальная логика представляет прежде всего метод для отыскания новых результатов, для перехода от известного к неизвестному; то же самое, только в гораздо более высоком смысле, представляет собой диалектика. Ф.

Из книги автора

7. Олег Владимирович Лосев и его изобретения, опередившие время В этой главе мы расскажем не только о научных исследованиях О.В. Лосева, но и покажем значение его изобретений с современных позиций. Что же характерно для научного наследия О.В. Лосева? Это прежде всего то, что

Ежегодно в последнюю субботу июня в России отмечается День изобретателя и рационализатора. Наша страна богата великими учеными и изобретателями, которые внесли свой значимый вклад не только в российский прогресс, но и в мировой. Предлагаем вам ознакомиться с гениальными плодами инженерной мысли наших соотечественников, которыми по праву можно гордиться!

1. Гальванопластика

Мы так часто встречаемся с изделиями, которые выглядят как металлические, а на самом деле сделаны из пластика и лишь покрыты слоем металла, что перестали их замечать. Еще есть металлические изделия, покрытые слоем другого металла - например, никеля. А есть металлические изделия, которые на самом деле копия неметаллической основы. Всеми этими чудесами мы обязаны гению физики Борису Якоби - кстати, старшему брату великого немецкого математика Карла Густава Якоби.

Увлечение Якоби физикой вылилось в создание первого в мире электродвигателя с прямым вращением вала, но одним из самых главных его открытий была гальванопластика - процесс осаждения металла на форме, позволяющий создавать идеальные копии исходного предмета. Таким способом были созданы, например, скульптуры на нефах Исаакиевского собора. Гальванопластика может применяться даже в домашних условиях.

Метод гальванопластики и его производные нашли многочисленные сферы применения. С его помощью чего только не делали и не делают до сих пор, вплоть до клише госбанков. Якоби получил за это открытие в России Демидовскую премию, а в Париже - большую золотую медаль. Возможно, изготовленную тоже этим самым методом.

2. Электромобиль

В последней трети XIX века мир охватила форменная электрическая лихорадка. Поэтому и электромобили делали все кому не лень. Это был «золотой век» электрических автомобилей. Города были меньше, и пробег на одной зарядке в 60 км был вполне приемлем. Одним из энтузиастов был инженер Ипполит Романов, который к 1899 году создал несколько моделей электрических кэбов.

Но главное даже не это. Романов придумал и создал в металле электрический омнибус на 17 пассажиров, разработал схему городских маршрутов для этих прародителей современных троллейбусов и получил разрешение на работу. Правда, под свой личный коммерческий страх и риск.

Найти нужную сумму изобретатель не смог, к большой радости конкурентов - владельцев конок и многочисленных извозчиков. Однако работающий электроомнибус вызвал большой интерес у других изобретателей и остался в истории техники как изобретение, убитое муниципальной бюрократией.

3. Трубопроводный транспорт

Что считать первым настоящим трубопроводом, сказать сложно. Можно вспомнить предложение Дмитрия Менделеева, датированное еще 1863 годом, когда он предложил на бакинских нефтяных приисках доставлять нефть от мест добычи до морского порта не в бочках, а по трубам. Предложение Менделеева не было принято, а спустя два года первый трубопровод построили американцы в Пенсильвании. Как всегда, когда что-то делается за границей, это начинают делать и в России. Или по крайней мере выделять деньги.

В 1877 году Александр Бари и его помощник Владимир Шухов вновь выступают с идеей трубопроводного транспорта, уже опираясь и на американский опыт, и вновь на авторитет Менделеева. В итоге Шухов в 1878 году построил первый в России нефтепровод, доказав удобство и практичность трубопроводного транспорта. Пример Баку, который тогда был одним из двух лидеров мировой нефтедобычи, стал заразительным, и «сесть на трубу» стало мечтой любого предприимчивого человека. На фото: вид трехтопочного куба. Баку, 1887 год.

4. Электродуговая сварка

Николай Бенардос происходит из новороссийских греков, живших на берегу Черного моря. Он автор более ста изобретений, но в историю вошел благодаря электрической дуговой сварке металлов, которую запатентовал в 1882 году в Германии, Франции, России, Италии, Англии, США и других странах, назвав свой метод «электрогефестом».

Метод Бенардоса распространился по планете со скоростью лесного пожара. Вместо того чтобы возиться с клепками-болтами, было достаточно просто сварить куски металла. Однако потребовалось около полувека, чтобы сварка окончательно заняла главенствующее положение среди монтажных методов. Вроде бы простой метод - создать электрическую дугу между плавящимся электродом в руках сварщика и кусками металла, которые надо сварить. Но решение изящное. Правда, оно не помогло изобретателю достойно встретить старость, он скончался в бедности в 1905 году в богадельне.

5. Многомоторный самолет «Илья Муромец»

Трудно сейчас поверить, но чуть больше ста лет назад считалось, что многомоторный самолет будет крайне сложным и опасным в управлении. Доказал абсурдность этих утверждений Игорь Сикорский, который летом 1913 года поднял в воздух двухмоторный самолет, получивший название Le Grand, а затем и его четырехмоторный вариант - «Русский витязь».

12 февраля 1914 года в Риге на полигоне Русско-Балтийского завода в воздух поднялся четырехмоторный «Илья Муромец». На борту четырехмоторного самолета было 16 пассажиров - абсолютный рекорд того времени. В самолете был комфортабельный салон, отопление, ванна с туалетом и… прогулочная палуба. С целью демонстрации возможностей самолета летом 1914 года Игорь Сикорский совершил на «Илье Муромце» перелет от Петербурга до Киева и обратно, установив мировой рекорд. Во время Первой мировой войны эти самолеты стали первыми в мире тяжелыми бомбардировщиками.

6. Квадролет и вертолет

Игорь Сикорский также создал и первый серийный вертолет, им стал R-4, или S-47, который компания Vought-Sikorsky начала выпускать в 1942 году. Это был первый и единственный вертолет, который участвовал во Второй мировой войне, на тихоокеанском театре военных действий, в качестве штабного транспорта и для эвакуации раненых.

Однако вряд ли военное ведомство США дало бы Игорю Сикорскому смело экспериментировать с вертолетной техникой, если бы не удивительная винтокрылая машина Георгия Ботезата, в 1922 году начавшего испытывать свой вертолет, который ему заказали американские военные. Вертолет первым реально отрывался от земли и мог держаться в воздухе. Возможность вертикального полета, таким образом, была доказана.

Вертолет Ботезата называли «летающим осьминогом» из-за его интересной конструкции. Это был квадрокоптер: четыре винта размещались на концах металлических ферм, а система управления располагалась в центре - точь-в-точь как у современных радиоуправляемых дронов.

7. Цветное фото

Цветная фотография появилась еще в конце XIX века, однако снимки того времени характеризовались смещением в ту или иную часть спектра. Российский фотограф был одним из лучших в России и, как и многие его коллеги по всему миру, мечтал добиться максимально натуральной цветопередачи.

В 1902 году Прокудин-Горский изучал цветное фотографическое дело в Германии, у Адольфа Мите, который к тому времени был всемирной звездой цветной фотографии. Вернувшись домой, Прокудин-Горский стал совершенствовать химию процесса и в 1905 году запатентовал свой собственный сенсибилизатор, то есть вещество, повышающее чувствительность фотопластинок. В результате ему удалось получать негативы исключительного качества.

Прокудин-Горский организовал ряд экспедиций по территории Российской империи, снимая и известных персон (например, Льва Толстого), и крестьян, храмы, пейзажи, заводы, - таким образом создав удивительную коллекцию цветной России. Демонстрации Прокудина-Горского вызвали большой интерес в мире и подтолкнули других специалистов к разработке новых принципов цветной печати.

8. Парашют

Как известно, идею парашюта предложил еще Леонардо да Винчи, а спустя несколько веков, с появлением воздухоплавания, начались регулярные прыжки из-под воздушных шаров: парашюты подвешивались под ними в частично раскрытом состоянии. В 1912 году американец Бэрри смог с таким парашютом покинуть самолет и, что немаловажно, живым опустился на землю.

Проблему решали кто во что горазд. Например, американец Стефан Банич изготовил парашют в виде зонта с телескопическими спицами, которые крепились вокруг туловища пилота. Эта конструкция работала, хотя все равно была не очень удобна. А вот инженер Глеб Котельников решил, что все дело в материале, и сделал свой парашют из шелка, упаковав его в компактный ранец. Котельников запатентовал свое изобретение во Франции в преддверии Первой мировой войны.

Но кроме ранцевого парашюта он придумал еще одну интересную вещь. Раскрываемость парашюта он испытывал, раскрывая его во время движения автомобиля, который буквально вставал как вкопанный. Так Котельников придумал тормозной парашют в качестве системы аварийного торможения для самолетов.

9. Терменвокс

История этого музыкального инструмента, издающего странные «космические» звуки, началась с разработки сигнализации. Именно тогда потомок французских гугенотов Лев Термен в 1919 году обратил внимание на то, что изменение положения тела близ антенн колебательных контуров влияет на громкость и тональность звука в контрольном динамике.

Все остальное было делом техники. И маркетинга: Термен показал свой музыкальный инструмент руководителю Советского государства Владимиру Ленину, энтузиасту культурной революции, а после демонстрировал его в Штатах.

Жизнь Льва Термена была сложной, он знал и взлеты, славу, и лагеря. Его музыкальный инструмент живет и поныне. Самая крутая версия - это Moog Etherwave. Терменвокс можно слышать у самых продвинутых и у вполне попсовых исполнителей. Это действительно изобретение на все времена.

10. Цветное телевидение

Владимир Зворыкин родился в купеческой семье города Мурома. Мальчик имел возможность с детства много читать и ставить всякие опыты - эту страсть к науке отец всемерно поощрял. Начав учиться в Петербурге, он узнал об электронно-лучевых трубках и пришел к выводу, что именно за электронными схемами будущее телевидения.

Зворыкину повезло, он вовремя уехал из России в 1919 году. Много лет работал и в начале 30-х годов запатентовал передающую телевизионную трубку - иконоскоп. Еще раньше он сконструировал один из вариантов принимающей трубки - кинескоп. А потом, уже в 1940-е годы, он разбил световой луч на синий, красный и зеленый цвета и получил цветное ТВ.

Кроме этого, Зворыкин разработал прибор ночного видения, электронный микроскоп и еще много всяких интересных вещей. Он изобретал всю свою долгую жизнь и даже на пенсии продолжал удивлять своими новыми решениями.

11. Видеомагнитофон

Компанию AMPEX создал в 1944 году русский эмигрант Александр Матвеевич Понятов, который взял для названия три буквы своих инициалов и добавил EX - сокращенное от «excellent». Поначалу Понятов производил звукозаписывающую аппаратуру, но в начале 50-х сосредоточился на разработке видеозаписи.

К тому моменту уже были опыты записи телеизображения, но они требовали огромного количества ленты. Понятов и коллеги предложили записывать сигнал поперек ленты, с помощью блока вращающихся головок. 30 ноября 1956 года в эфир вышли первые записанные ранее новости CBS. А в 1960 году компания в лице ее руководителя и основателя получила «Оскар» за выдающийся вклад в техническое оснащение индустрии кино и телевидения.

Судьба свела Александра Понятова с интересными людьми. Он был конкурентом Зворыкина, вместе с ним работал Рей Долби, создатель знаменитой системы шумопонижения, а одним из первых клиентов и инвесторов был знаменитый Бинг Кросби. И еще: по распоряжению Понятова около любого офиса обязательно высаживались березы - в память о Родине.

12. Тетрис

Давным-давно, 30 лет назад, в СССР была популярна головоломка «Пентамино»: нужно было укладывать на разлинованное в клеточку поле различные фигуры, состоящие из пяти квадратиков. Выпускались даже сборники задач, и шло обсуждение результатов.

С математической точки зрения такая головоломка была отличным тестом для компьютера. И вот научный сотрудник Вычислительного центра АН СССР Алексей Пажитнов написал такую программу для своего компьютера «Электроника 60». Но мощности не хватало, и Алексей убрал один кубик из фигурок, то есть сделал «тетрамино». Ну а потом пришла идея, чтобы фигурки падали в «стакан». Так появился тетрис.

Это была первая компьютерная игра из-за железного занавеса, а для очень многих вообще первая компьютерная игра. И хотя уже появилось много новых игрушек, тетрис по-прежнему привлекает своей кажущейся простотой и реальной сложностью.

17.01.2012 12.02.2018 by ☭ СССР ☭

В нашей стране было много выдающихся деятелей, о которых мы, к сожалению, забываем, не говоря уже об открытиях, которые были сделаны русскими учеными и изобретателями. События, перевернувшие историю России, также известны не каждому. Я хочу исправить эту ситуацию и вспомнить самые известные российские изобретения.

1. Самолет — Можайский А.Ф.

Талантливый русский изобретатель Александр Федорович Можайский (1825-1890 гг.) первый в мире создал самолет в натуральную величину, способный поднять в воздух человека. Над решением этой сложной технической задачи до А. Ф. Можайского, как известно, работали люди многих поколений как в России, так и в других странах, шли они разными путями, но никому из них не удавалось довести дело до практического опыта с натурным самолетом. А. Ф. Можайский нашел верный путь к решению этой задачи. Он изучил труды своих предшественников, развил и дополнил их, используя свои теоретические познания и практический опыт. Конечно, не все вопросы удалось ему разрешить, но сделал он, пожалуй, все, что было возможно в то время, несмотря на крайне неблагоприятную для него обстановку: ограниченность материальных и технических возможностей, а также недоверие к его работам со стороны военно-бюрократического аппарата царской России. В этих условиях А. Ф. Можайский сумел найти в себе духовные и физические силы для завершения постройки первого в мире самолета. Это был творческий подвиг, навеки прославивший нашу Родину. К сожалению, сохранившиеся документальные материалы не позволяют в необходимых подробностях дать описание самолета А. Ф. Можайского и его испытаний.

2. Вертолёт – Б.Н. Юрьев.


Борис Николаевич Юрьев - выдающийся ученый-авиатор, действительный член Академии наук СССР, генерал-лейтенант инженерно-технической службы. В 1911 году изобрел автомата перекоса (основной узел современного вертолёта) — устройство, сделавшее возможным постройку вертолётов с характеристиками устойчивости и управляемости, приемлемыми для безопасного пилотирования рядовыми лётчиками. Именно Юрьев проложил дорогу для развития вертолётов.

3. Радиоприёмник — А.С.Попов.

А.С. Попов впервые продемонстрировал действие своего прибора 7 мая 1895г. на заседании Русского физико-химического общества в Петербурге. Этот прибор стал первым в мире радиоприемником, а день 7 мая стал днем рождения радио. И сейчас он ежегодно отмечается в России.

4. Телевизор — Розинг Б.Л.

25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.

5. Парашют ранцевый — Котельников Г.Е.

В 1911 году русский военный, Котельников, под впечатлением увиденной им на Всероссийском празднике воздухоплавания в 1910 году гибели русского лётчика капитана Л. Мациевича изобрёл принципиально новый парашют РК-1. Парашют Котельникова был компактен. Его купол изготовлен из шёлка, стропы разделялись на 2 группы и крепились к плечевым обхватам подвесной системы. Купол и стропы укладывались в деревянный, а позднее алюминиевый ранец. Позже, в 1923 году Котельников предложил ранец для укладки парашюта, сделанный в виде конверта с сотами для строп. За 1917 год в русской армии было зарегистрировано 65 спусков с парашютами, 36 - для спасения и 29 добровольных.

6. Атомная электростанция.

Запущена 27 июня 1954 года в Обнинске (тогда поселок Обнинское Калужской области). Была оснащена одним реактором АМ-1 («атом мирный») мощностью 5 МВт.
Реактор Обнинской АЭС, помимо выработки энергии, служил базой для экспериментальных исследований. В настоящее время Обнинская АЭС выведена из эксплуатации. Её реактор был заглушен 29 апреля 2002 года по экономическим причинам.

7. Периодическая таблица химических элементов – Менделеев Д.И.


Периодическая система химических элементов (таблица Менделеева) - классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869-1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы).

8. Лазер

Прототип лазера мазеры были сделаны в 1953-1954 гг. Н. Г. Басовым и А. М. Прохоровым, а также независимо от них американцем Ч. Таунсом и его сотрудниками. В отличие от квантовых генераторов Басова и Прохорова, которые нашли выход в использовании более чем двух энергетических уровней, мазер Таунса не мог работать в постоянном режиме. В 1964 году Басов, Прохоров и Таунс получили Нобелевскую премию по физике «За основополагающую работу в области квантовой электроники, позволившую создать генераторы и усилители, основанные на принципе мазера и лазера».

9. Бодибилдинг


Русский атлет Евгении Сандов, название его книги «строительство тела» – bodybuilding было дословно переведино на англ. язык.

10. Водородная бомба – Сахаров А.Д.

Андрей Дмитриевич Сахаров (21 мая 1921, Москва - 14 декабря 1989, Москва) - советский физик, академик АН СССР и политический деятель, диссидент и правозащитник, один из создателей первой советской водородной бомбы. Лауреат Нобелевской премии мира за 1975 год.

11. Первый искуственный спутник земли, первый космонавт и т.д.

12. Гипс — Н. И. Пирогов

Пирогов впервые в истории мировой медицины применил гипсовую повязку, которая позволила ускорить процесс заживления переломов и избавила многих солдат и офицеров от уродливого искривления конечностей. Во время осады Севастополя, для ухода за ранеными, Пирогов воспользовался помощью сестёр милосердия, часть которых приехала на фронт из Петербурга. Это тоже было нововведение по тем временам.

13. Военная медицина

Пирогов изобрел этапность оказания военной медицинской службы, а также методы исследования анатомии человека. В частности он является основоположником топографической анатомии.


Антарктида была открыта 16 (28 января) 1820 года русской экспедицией под руководством Фаддея Беллинсгаузена и Михаила Лазарева, которые на шлюпах «Восток» и «Мирный» подошли к ней в точке 69°21? ю. ш. 2°14? з. д. (G) (район современного шельфового ледника Беллинсгаузена).

15. Иммунитет

Обнаружив в 1882 явления фагоцитоза (о чём доложил в 1883 на 7-м съезде рус. естествоиспытателей и врачей в Одессе), разработал на их основе сравнительную патологию воспаления (1892), а в дальнейшем - фагоцитарную теорию иммунитета («Невосприимчивость в инфекционных болезнях», 1901 - Нобелевская премия, 1908, совместно с П. Эрлихом).


Основная космологическая модель, в которой рассмотрение эволюции Вселенной начинается с состояния плотной горячей плазмы, состоящей из протонов, электронов и фотонов. Впервые модель горячей вселенной рассматривалась в 1947 Георгием Гамовым. Происхождение элементарных частиц в модели горячей вселенной с конца 1970-х описывают с помощью спонтанного нарушения симметрии. Многие недостатки модели горячей вселенной были решены в 1980-х в результате построения теории инфляции.


Самая извесная компьютерная игра, изобретена Алексеем Пажитновым в 1985 году.

18. Первый автомат — В.Г.Фёдоров

Автоматический карабин, предназначенный для стрельбы очередями с рук. В.Г.Фёдоров. За рубежом этот вид оружия именуется «штурмовой винтовкой».

1913 год – опытный образец под специальный промежуточный по мощности патрон(между пистолетным и винтовочным).
1916 год – принятие на вооружение (под японский винтовочный патрон) и первое боевое применение (Румынский фронт).

19. Лампа накаливания – лампа Лодыгина А.Н.

У электрической лампочки нет одного-единственного изобретателя. История лампочки представляет собой целую цепь открытий, сделанных разными людьми в разное время. Однако заслуги Лодыгина в создании ламп накаливания особенно велики. Лодыгин первым предложил применять в лампах вольфрамовые нити (в современных электрических лампочках нити накала именно из вольфрама) и закручивать нить накаливания в форме спирали. Также Лодыгин первым стал откачивать из ламп воздух, чем увеличил их срок службы во много раз. Другим изобретением Лодыгина, направленным на увеличение срока службы ламп, было наполнение их инертным газом.

20. Водолазный аппарат

В 1871 году Лодыгин создал проект автономного водолазного скафандра с использованием газовой смеси, состоящей из кислорода и водорода. Кислород должен был вырабатываться из воды путем электролиза.

21. Индукционная печь


Первый гусеничный движитель (без механического привода) был предложен в 1837 г. штабс-капитаном Д.Загряжским. Его гусеничный движитель строился на двух колесах, обведённых железной цепью. А в 1879 г. русский изобретатель Ф.Блинов получил патент на созданный им «гусеничный ход» для трактора. Он его называл «паровоз для грунтовых дорог»

23. Кабельная телеграфная линия

Линия Петербург-Царское Село была построена в 40-егг. XIX века и имела протяженность 25 км.(Б.Якоби)

24. Синтетический каучук из нефти – Б.Бызов

25. Оптический прицел


«Инструмент математический с перспективною зрительною трубкою, с протчими к тому принадлежностями и ватерпасом для скорого навождения из батареи или с грунта земли по показанному месту в цель горизонтально и по олевации». Андрей Константинович НАРТОВ (1693-1756).


В 1801 г. уральский мастер Артамонов решил задачу облегчения веса повозки за счет сокращения числа колес с четырех до двух. Таким образом, Артамонов создал первый в мире педальный самокат прообраз будущего велосипеда.

27. Электросварка

Способ электрической сварки металлов придумал и впервые применил в 1882 году русский изобретатель Николай Николаевич Бенардос (1842 - 1905). «Сшивание» металла электрическим швом он назвал «электрогефестом».

Первый в мире персональный компьютер был изобретен не американской фирмой «Эппл компьютерз» и не в 1975 году, а в СССР в 1968
году советским конструктором из Омска Арсением Анатольевичем Гороховым (род. 1935). В авторском свидетельстве № 383005 подробно описан «программирующий прибор», как его тогда назвал изобретатель. На промышленный образец денег не дали. Изобретателя попросили немного подождать. Он и подождал, пока в очередной раз за рубежом не изобрели отечественный «велосипед».

29. Цифровые технологии.

- отец всех цифровых технологий в передаче данных.

30. Электродвигатель – Б.Якоби.

31. Электромобиль


Двухместный электромобиль И.Романова образца 1899 г. изменял скорость движения в девяти градациях – от 1,6 км в час до максимальной в 37,4 км в час

32. Бомбардировщик

Четырехмоторный самолет «Русский витязь» И.Сикорский.

33. Автомат Калашникова


Символ свободы и борьбы с угнетателями.

Инженер компании «Raytheon» Перси Спенсер, занимавшийся изготовлением оборудования для радаров, в 1945 году совершил одно из важнейших для этого мира открытий. Он обнаружил, что СВЧ-излучение способно нагревать предметы. Легенд о том, как он это выяснил, есть несколько. Согласно одной из них, однажды он случайно оставил в кармане шоколадный батончик и приступил к работе с магнетроном, а спустя несколько минут с удивлением почувствовал, как в шоколад в кармане начал плавиться. Попытавшись выяснить, в чем дело, Спенсер решил провести с другими продуктами: яйцами и зернами кукурузы. Из увиденного он сделал вывод, что причиной наблюдаемого является микроволновое излучение.

Как бы там ни было, в 1946 году Спенсер получил патент на первую микроволновую печь. Первая микроволновка «Radarange» была выпущена в 1947 году той же фирмой, в которой он работал. Но предназначалась она не для разогрева пищи, а для быстрой разморозки продуктов и использовалась исключительно военными. Ее высота составляла 168 сантиметров, масса — 340 кг, а мощность - 3 кВт, что примерно в два раза больше мощности современных бытовых СВЧ-печей. Микроволновка для военных стоила 3000 долларов. В 1965 году вышел ее бытовой вариант, который продавался за 500 долларов.

Хинин

В течение длительного времени хинин использовался как основное средство лечения малярии. Сейчас его по-прежнему можно встретить в качестве одного из компонентов лекарств против малярии, а также в качестве добавки в различные тонизирующие напитки.

Иезуитские миссионеры использовали хинин еще с начала 1600 годов, обнаружив его в Южной Америке и привезя впоследствии в Европу, однако, согласно одной из легенд, применение этого вещества для лечения болезней практиковалось представителями андских цивилизаций еще раньше, а открытие хинина, и в частности его свойств, нередко связывают со случаем удачи.

Эта история не так хорошо задокументирована, как та же официальная версия о миссионере Бернабе Кобо, который привез полученный от индейцев хинин в Европу и вылечил им жену вице-короля Перу, однако мы просто не могли проигнорировать интересную легенду об удаче, которая впоследствии изменила этот мир.

Рентгеновское излучение

В 1895 году немецкий физик Вильгельм Рентген работал с катодно-лучевой трубкой. Несмотря на то, что сама трубка была экранирована, Рентген заметил, что картон, покрытый платиносинеродистым барием и находившийся рядом с трубкой, начинал светиться в темной комнате.

Рентген попытался блокировать лучи, но большинство вещей, которые он помещал перед ними, проявляли аналогичный эффект. Когда в конце концов он поставил перед трубкой свою руку, то заметил, что она начинает просвечиваться на изображении, проецируемом на экране. Свое открытие он назвал «икс-лучами» (X-rays). После Рентген заменил трубку фотографической пластиной и получил первую рентгенограмму.

Вскоре после этого технология была адаптирована медицинскими учреждениями и исследовательскими лабораториями. Однако опасность длительного воздействия рентгеновских лучей ученым еще только предстояло понять.

Радиоактивность

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей.

Беккерель решил выяснить, не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую желто-зеленым светом. Осветив ее солнечным светом, он завернул соль в черную бумагу и положил в темном шкафу на фотопластинку, тоже завернутую в черную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через черную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку.

Проведя несколько аналогичных экспериментов с использованием урановой соли, он понял, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу - урану.

Застежки-липучки

В 1941 году швейцарский инженер Жорж де Местраль решил прогуляться в Альпах со своей собакой. По возвращении домой он, как обычно, принялся отчищать шерсть животного от головок репейника. Но на этот раз решил посмотреть, как те выглядят под микроскопом. Как оказалось, на каждой головке имелись крошечные крючки, с помощью которых они и цеплялись к шерсти животного и одежде.

Инженер не планировал придумывать новую систему застежек, но увидев, насколько просто и крепко цепляются крючки к ткани и шерсти, он все-таки не устоял перед соблазном. Через годы проб и ошибок он понял, что самым подходящим материалом для создания липучек является нейлон.

Застежки-липучки стали очень популярными вскоре после того, как технология была адаптирована аэрокосмическим агентством NASA. Позже липучки стали широко использоваться в производстве повседневной одежды и обуви.

Сахарин

Сахарин представляет собой искусственный подсластитель, примерно в 400 раз слаще сахара. Он был открыт в 1878 году немецким химиком российского происхождения Константином Фальбергом в Университете Джона Хопкинса. Фальберг и его руководитель американский профессор Айра Ремсен вели исследования производных битума (каменноугольные смолы).

После долгого дня, проведенного в лаборатории, Фальберг забыл помыть руки перед ужином. Взяв в руку хлеб и откусив кусочек, ученый заметил, что тот имеет сладковатый вкус, как, впрочем, и вся остальная еда, к которой он прикасался руками.

Он вернулся в лабораторию и стал проводить эксперименты по смешиванию различных составляющих, пока в конечном итоге не обнаружил, что при сочетании орто-сульфобензойной кислоты с хлористым фосфором и аммиаком получается вещество с тем самым сладковатым привкусом (следует отметить, что практика пробовать случайные химикаты на вкус совсем не типична для ученых).

Фальберг запатентовал химическую формулу сахарина в 1884 году (не вписав в держателя патента Ремсен, несмотря на то что они вместе до этого опубликовали первую научную статью по этому открытию). Широкое распространение искусственный подсластитель получил во время Первой мировой войны, когда запасы и поставки сахара в мире были ограничены.

Тесты вещества показали, что оно не усваивается организмом и не является калорийным. В 1907 году сахарин в качестве заменителя сахара стал приниматься диабетиками как диабетический подсластитель, не содержащий сахар.

Имплантируемый кардиостимулятор

В 1956 году американский инженер и изобретатель Уилсон Грэйтбатч занимался разработкой устройства, записывающего сердечный ритм. Потянувшись в коробку за резистором, который должен был завершить контур схемы, он достал неправильный – резистор оказался большего размера.

Тем не менее, установив этот резистор, инженер обнаружил, что контур излучает электрические пульсации. Частота пульсаций натолкнула его на мысль о сердечном ритме. Грэйтбатч загорелся желанием создать компактный вживляемый кардиостимулятор. Оставалось лишь придумать способ, как уменьшить размеры стимулятора, чтобы при этом он мог работать.

Через два года он представил первый вживляемый кардиостимулятор, подающий искусственные импульсы для стимуляции работы сердца. Устройство было имплантировано собаке. Эта запатентованная инновация привела к началу производства и дальнейшему развитию кардиостимуляторов.

ЛСД

В 1943 году, еще не зная о действии полученного препарата, Хофман случайно впитал некоторое количество вещества подушечками пальцев, ощутив ярко выраженный эффект беспокойства и головокружения, о чем сообщил своему ассистенту.

Вернувшись домой, он лег на кровать и «погрузился в своеобразное состояние опьянения, характеризующееся очень активной игрой воображения», как он сам писал в своих заметках. Тремя днями позже Хофман решил первым в мире преднамеренно принять препарат. Вот как он описывал свои ощущения после:

«Я попросил моего лабораторного ассистента, который был информирован об эксперименте, проводить меня домой. Мы отправились на велосипеде, так как автомобиля не было из-за ограничений военного времени. По дороге домой моё состояние начало принимать угрожающие формы. Все в моем поле зрения дрожало и искажалось, как будто в кривом зеркале. У меня также было чувство, что мы не можем сдвинуться с места. Однако мой ассистент сказал мне позже, что мы ехали очень быстро. Наконец, мы приехали домой целые и невредимые, и я едва смог обратиться с просьбой к своему спутнику, чтобы он позвал нашего семейного врача и попросил молока у соседей. Головокружение и ощущение, что я теряю сознание, стали к этому времени настолько сильными, что я не мог больше стоять, и мне пришлось лечь на диван. Окружающий меня мир теперь ещё более ужасающе преобразился. Все в комнате вращалось, и знакомые вещи и предметы мебели приобрели гротескную угрожающую форму. Все они были в непрерывном движении, как бы одержимые внутренним беспокойством. Женщина возле двери, которую я с трудом узнал, принесла мне молока - на протяжении вечера я выпил два литра. Это больше не была фрау Р., а скорее злая и коварная ведьма в раскрашенной маске.

Ещё хуже, чем эти демонические трансформации внешнего мира, была перемена того, как я воспринимал себя, свою внутреннюю сущность. Любое усилие моей воли, любая попытка положить конец дезинтеграции внешнего мира и растворению моего «Я» казались тщетными. Какой-то демон вселился в меня, завладел моим телом, разумом и душой. Я вскочил и закричал, пытаясь освободиться от него, но затем опустился и беспомощно лёг на диван. Вещество, с которым я хотел экспериментировать, покорило меня. Это был демон, который презрительно торжествовал над моей волей».

Пластилин

Вопрос о том, кого считать изобретателем пластилина, является спорным. В Германии им считают Франца Колба (патент 1880 года), в Великобритании - Уильяма Харбута (патент 1899 года). Существует еще одна версия создания пластилина, согласно которой это вещество придумал Ной Маквикер.

Липкий материал был создан Ноем Маквикером, работавшим на тот момент со своим братом Клео в компании Kutol, производившей мыло. Однако изначально изготовленный Маквикером материал не задумывался как игрушка. Он разрабатывался как средство для очистки обоев.

Одной из проблем, с которой приходилось сталкиваться держателям каминов, которыми люди отапливали дома, была сажа, оседавшая на стены и портившая обои. Липкая глина обещала беспроблемную очистку. Однако вскоре в моду вошли виниловые обои, которые можно было мыть простой губкой, смоченной водой, и чистящая глина стала неактуальной.

Когда Маквикеры уже собирались выйти из бизнеса, к ним поступила новая идея, предложенная воспитательницей детского сада по имени Кей Зуфалл, которая заметила, что материал отлично меняет форму и его можно использовать для лепки. Через общих близких родственников она сообщила об этой идее Ною Маквикеру. Тот, в свою очередь, решил удалить из материала моющую составляющую и добавил в него краситель. Изначальное название нового материала «Kutol’s Rainbow Modelling Compound» решили заменить на предложенный Кей вариант «пластилин».

Пенициллин

«Когда я проснулся на рассвете 28 сентября 1928 года, я, конечно, не планировал революцию в медицине своим открытием первого в мире антибиотика или бактерии-убийцы. Но полагаю, что именно это я и сделал».

В 1928 году сэр Александр Флеминг, профессор бактериологи, вернувшись в свою лабораторию спустя месяц отдыха со своей семьей, обнаружил, что в одной из его чашек Петри появились плесневые грибы, которые уничтожили до этого находившиеся в ней колонии стафилококков, но при этом не тронули другие культуры.

Флеминг отнес грибы, выросшие на пластине с его культурами, к роду пеницилловых и спустя несколько месяцев назвал выделенное вещество пенициллином. Но поскольку Флеминг не был химиком, он не был в состоянии извлечь и очистить активное вещество.

О своем открытии ученый написал в 1929 году в британском журнале Экспериментальной Патологии, но его статье было уделено мало внимания. До 1940 года Флеминг продолжал свои опыты, пытаясь разработать методику быстрого выделения пенициллина, которую можно было бы использовать в дальнейшем для более масштабного применения.

Впервые пенициллин был применен для лечения человека британскими учеными Говардом Флори и Эрнстом Чейном 2 февраля 1941 года, что положило начало эпохи антибиотиков.

Виагра

Виагра стала первым препаратом для лечения эректильной дисфункции, однако изначально она разрабатывалась совсем не для этого. Ее создателем является американская компания Pfizer, разработавшая препарат силденафил, по задумке предназначавшийся для лечения сердца.

Однако во время клинических испытаний было выявлено, что влияние препарата на сердечный кровоток минимально, однако он обладает выраженным влиянием на кровоток в области органов малого таза, сопровождавшееся более продолжительной и сильной эрекцией у мужчин. Даже в тех случаях, когда люди уже и не помнили, когда у них последний раз она была. Так появилась Виагра.

Дополнительные клинические испытания Pfizer с участием 4000 мужчин с эректильной дисфункцией показали аналогичный результат эффективности препарата.

Инсулин

Открытие, которое позже позволило изобрести инсулин, стало чистой случайностью.

В 1889 году два доктора из Страсбургского университета, Оскар Минковски и Джозеф вон Меринг, пытаясь понять, как поджелудочная железа влияет на пищеварение, удалили этот орган у здоровой собаки. Спустя несколько дней они обнаружили, что вокруг урины подопытного пса собираются мухи, что оказалось совершенной неожиданностью.

Они провели анализ этой мочи и обнаружили в ней сахар. Ученые поняли, что его наличие связано с удаленной несколькими днями ранее поджелудочной железой, что привело к тому, что у собаки развился диабет.

Тем не менее эти двое ученых так и не выяснили, что гормоны, вырабатываемые поджелудочной железой, регулируют сахар в крови. Это выяснили исследователи из Университета Торонто, которые в рамках экспериментов, проводившихся с 1920 по 1922 годы, смогли выделить гормон, который впоследствии получил название инсулин.

За это революционное открытие ученые из Университета Торонто были удостоены Нобелевской премии, а фармацевтическая компания Eli Lilly and Company, с одним из владельцев которой был знаком один из ученых, начала первое промышленное производство этого вещества.

Вулканизированная резина

Изобретателем способа вулканизации считают американца Чарльза Гудьира, который с 1830 года пытался создать материал, способный оставаться эластичным и прочным в жару и холод.

Он обрабатывал резиновую смолу кислотой, кипятил ее в магнезии, добавлял различные вещества, однако все его изделия превращались в липкую массу в первый же жаркий день.

Открытие пришло к изобретателю случайно. В 1839 году, работая на Массачусетской резиновой фабрике, он однажды уронил на раскаленную плиту ком резины, перемешанной с серой.

Вопреки ожиданию, она не расплавилась, а, наоборот, обуглилась, словно кожа. В первом своем патенте он предложил подвергать каучук воздействию нитрита меди и царской водки. Впоследствии изобретатель обнаружил, что резина становится невосприимчивой к температурным воздействиям при добавлении серы и свинца.

После многочисленных испытаний Гудьир нашел оптимальный режим вулканизации: он смешал каучук, серу и свинцовый порошок и нагрел эту смесь до определенной температуры, в результате чего получилась резина, которая не изменяла свои свойства ни под влиянием солнечных лучей, ни под воздействием холода.

Кукурузные хлопья

История кукурузных хлопьев берет начало в XIX веке. Владельцы санатория «Батл-Крик» в штате Мичиган (США), доктор Келлог и его брат Вилл Кит Келлог готовили какое-то блюдо из кукурузной муки, но им срочно понадобилось отлучиться по неотложным делам пансиона.

Когда же они вернулись, то обнаружили, что кукурузная мука, находившаяся на строгом учете, чуть-чуть испортилась. Но они все равно решили приготовить из муки тесто, однако тесто свернулось, и получились хлопья и комки. Братья от отчаяния пожарили эти хлопья, и оказалось, что некоторые из них стали воздушными, а некоторые приобрели приятную хрустящую консистенцию.

Впоследствии эти хлопья были предложены пациентам доктора Келлога в качестве нового блюда, и подававшиеся к столу с молоком и зефиром они были очень популярны.

Добавив в хлопья сахар, Вилл Кит Келлог сделал их вкус более приемлемым для широкой аудитории.

В 1894 году оригинальные кукурузные хлопья были запатентованы американским врачом Джоном Харви Келлогом. В 1906 году Келлоги начали массовое производство нового типа пищи и основали собственную компанию.

Тефлон

Благодарить за изобретение тефлона стоит химика Роя Планкетта. В 1938 году он работал в одной из лабораторий фирмы Дюпон (DuPont) в штате Нью-Джерси. В ту пору Планкетт изучал свойства фреонов.

Однажды он под сильным давлением заморозил тетрафторэтилен, вследствие чего был получен воскообразный белый порошок, который в дальнейшем продемонстрировал удивительные свойства.

Терзаемый любопытством Планкетт провел несколько экспериментов с новым веществом и обнаружил, что порошок не только жаропрочен, но еще и имеет низкие фрикционные свойства. Через два года уже был налажен выпуск нового материала, и мир узнал его под названием «тефлон».

Суперклей

Когда в 1942 году американский химик Гарри Кувер создал вещество, которое позже будет названо «суперклеем», он на самом деле экспериментировал с новыми материалами для прицелов в боевом оружии. Однако вещество из-за излишней клейкости было забраковано.

В 1951 году американские исследователи во время поисков термостойкого покрытия для кабин истребителей случайно обнаружили свойство цианоакрилата прочно склеивать различные поверхности. В 1955 году разработка была запатентована, а в продажу поступила в 1959 году.

Суперклей долгое время присутствовал в различных американских ток-шоу, где выяснялись его все новые и новые потрясающие свойства.

Цианокрилатный клей мог склеивать любые поверхности, даже если они не были предварительно зачищены должным образом. Основная проблема этого клея состоит не в том, чтобы намертво склеить детали, а в том, чтобы их потом разъединить.

Ударопрочное стекло

Небьющееся стекло широко используется в автомобильной промышленности и строительстве. Сегодня оно повсюду, но когда французский ученый Эдуард Бенедиктус в 1903 году случайно уронил на пол пустую стеклянную колбу и она не разбилась, он очень удивился.

Как оказалось, до этого в колбе хранился раствор коллодия, раствор испарился, но стенки сосуда остались покрыты его тонким слоем.

В то время во Франции интенсивно развивалось автомобилестроение, и ветровое стекло изготовляли из обычного стекла, что было причиной множества травм водителей, на что и обратил внимание Бенедиктус.

Он увидел реальную выгоду для спасения человеческих жизней в использовании его изобретения в автомобилях, но автомобилестроители посчитали его слишком дорогим для производства. Сейчас же оно используется повсеместно.

Вазелин

Название «вазелин» было запатентовано в США как торговая марка и торговый знак в 1878 году. Всем известное косметическое и лечебное средство изобрел и запатентовал эмигрировавший в Америку английский химик Роберт Чезбро. В этом изобретении ученому «помогли» нефтяники.

Когда в 1859 году начался нефтяной бум, Чезбро, общаясь с нефтяниками, заинтересовался липким нефтепродуктом – парафинообразной массой, которая при нефтедобыче налипала к бурильным установкам и забивала насосы. Он заметил, что рабочие постоянно используют эту массу при ожогах и порезах в качестве успешно заживляющего раны средства.

Ученый стал экспериментировать с массой и сумел выделить из нее полезные ингредиенты. Получившимся веществом он смазал свои многочисленные ожоги и шрамы, полученные во время опытов.

Эффект оказался поразительным. Раны зажили, причем довольно быстро. В дальнейшем поразительную ранозаживляющую способность этого вещества Чезбро продолжил совершенствовать и, пробуя на себе, наблюдал за результатом.