Основы энергообеспечения мышечной деятельности. Тайны мирового разума и ясновидение 3 энергосистемы атф что делает время развития

Принято считать, что древний человек питался исключительно углеводами и что всеядность, приведшая к употреблению мяса и животного жира, была решающим шагом к его современным болезням. Это утверждение не совсем точно. Ни древний человек, ни человекообразные обезьяны, вопреки существующему мнению, никогда не питались исключительно углеводами. Их организм всегда использовал как источник энергии и углеводы и животные жиры. Древний человек действительно получал энергию из растительной пищи, используя как энергетический материал главным образом глюкозу, а также другой углевод — фруктозу. Но независимо от исходного пищевого продукта, если в крови появляется избыток глюкозы, то эта глюкоза в жировой ткани при помощи гормона инсулина превращается в жир. Это происходит по той же схеме, по которой при кормлении домашней птицы зерном добиваются у нее накопления жира.

Если растительные жиры, содержащиеся в растительной пище, относятся с химической точки зрения к ненасыщенным жирам, то из глюкозы в человеческом организме образуются полутвердые и твердые, или насыщенные, жиры (такие же жиры мы получаем из животного организма). Когда пища в организм не поступает, на пример ночью, то именно эти жиры и служат источником, из которого извлекается энергия.

Таким образом, после приема пищи создаются условия для использования энергетических материалов пищи и соответственно сохраняются запасы резервного жира . Более того, запасы жира даже пополняются: если в крови накапливается избыток глюкозы (например, из-за снижения ее использования в мышцах), то этот избыток под влиянием того же инсулина превращается в жир. Тип энергетического обеспечения полностью изменяется в условиях голодания, например ночью, когда пища в организм не поступает. Система энергетического гомеостата и в этих условиях ведет себя очень «разумно»: в качестве топлива используется жир, запасы которого в жировых депо намного выше, чем запасы глюкозы, заключенной «в животном крахмале» — гликогене. А глюкоза сохраняется для нервной ткани, для которой она составляет основной источник энергии. При этом даже «учитывается», что запасы глюкозы в организме ограничены и в условиях голодания усиливается механизм, обеспечивающий производство глюкозы из белка.

Итак, в организме существует два способа энергетического обеспечения. При первом способе, который условно можно назвать дневным, энергетические материалы поступают с пищей, в то же время выключая использование резервного жира. Источником энергии здесь служит глюкоза и в меньшей степени — пищевой жир. Совместное использование двух энергетических субстратов облегчается тем, что жиры сгорают в пламени углеводов. При втором способе энергетического обеспечения организма, который условно можно назвать ночным, основным источником энергии становятся жирные кислоты. Правильное чередование типов обеспечения энергетическим материалом в норме достигается за счет влияния пищи на систему четырехкомпонентного энергетического гомеостата, в котором главными регулирующими факторами являются глюкоза и инсулин, жирные кислоты и гормон роста. Однако при ожирении и в процессе нормального старения механизм переключения энергетического гомеостата нарушается, и организм независимо от своих истинных потребностей переходит на жировой путь обеспечения энергией. Отсюда следует, что в энергетическом гомеостате с увеличением возраста происходят такие же изменения, какие наблюдаются и в адаптационном, и в репродуктивном гомеостате .

http://flowercityfashionista.com/map192 Но вот что может показаться странным. Если система плохо тормозится, то есть если повышение концентрации глюкозы в крови не оказывает нормального тормозящего влияния на секрецию гормона роста, то уровень его в крови должен увеличиться. Однако, напротив, у лиц среднего возраста, у которых гипоталамический порог повышен, концентрация гормона роста в крови отчетливо ниже, чем у молодых. Долгое время это противоречие оставалось без объяснения, пока различные исследователи не выяснили, что ожирению свойственно понижение уровня гормона роста в крови. В дальнейшем стало ясно, что именно жирные кислоты, концентрация которых в крови при ожирении увеличена, вызывают снижение уровня гормона роста. Этот вывод подтверждается следующим образом. Человеку вводится никотиновая, кислота — витамин, который тормозит мобилизацию жира, и снижение в крови концентрации жирных кислот сопровождается острым повышением уровня гормона роста.

Существование: «жирового тормоза», основанного на способности жирных кислот тормозить выделение из гипофиза гормона роста, весьма целесообразно. Действительно, если учитывать, что поступление пищи в организм должно затормозить использование резервного жира, то не только углеводы (глюкоза), но и жир (жирные кислоты) должен в соответствии с этим правилом угнетать выделение жиромобилизующего гормона роста.. Однако в действии этого целесообразного механизма имеется важное ограничение, почему-то не привлекшее к себе ранее внимания. В детском возрасте наблюдается одновременно высокий уровень в крови и жирных кислот, и гормона роста, как будто никакого «жирового тормоза» вообще не существует. Эту парадоксальную ситуацию можно объяснить, следующим образом.

Сочетание повышенной концентрации в крови и гормона роста, и жирных кислот противоречит их взаимоотношениям, определяемым механизмом отрицательной обратной связи: ведь высокий уровень жирных кислот в крови должен приводить путем воздействия на гипоталамус к снижению уровня в крови гормона роста. Поэтому одновременное повышение уровня и гормона роста, и жирных кислот может происходить только в том случае, если повышен порог чувствительности гипоталамуса к тормозящему влиянию жирных кислот. Иными словами, в период детства в системе гипоталамус — гормон роста — жирные кислоты наблюдается явление, которое в других главных гомеостатических системах возникает лишь в процессе старения.

Действительно, в адаптационной и репродуктивной системах с возрастом происходит повышение гипоталамического порога. Такое же явление имеет место и в энергетическом гомеостате в системе, контролирующей взаимоотношения между гормоном роста и глюкозой. Но в этом же энергетическом гомеостате по мере старения наблюдается и нечто полностью противоположное, а именно возрастное понижение гипоталамического порога чувствительности к тормозящему действию жирных кислот. Это и приводит к тому, что по мере старения, когда жирные кислоты становятся главным источником энергии, концентрация гормона роста в крови снижается.

Дата: 2010-03-28

Ни одно движение не может быть выполнено без затрат энергии. Единственным универсальным и прямым источником энергии для мышечного сокращения служит аденозинтрифосфат -АТФ; без него поперечные "мостики лишены энергии и актиновые нити не могут скользить вдоль миозиновых, сокращения мышечного волокна не происходит. АТФ относится к высокоэнергетическим (макроэргическим) фосфатным соединениям, при расщеплении (гидролизе) которого выделяется около 10 ккал/кг свободной энергии. При активизации мышцы происходит усиленный гидролиз АТФ, поэтому интенсивность энергетического обмена возрастает в 100-1000 раз по сравнению с уровнем покоя. Однако, запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы. В реальных условиях для того, чтобы мышцы могли длительно поддерживать свою сократительную способность, должно происходить постоянное восстановление (ресинтез) АТФ с той же скоростью, с какой он расходуется. В качестве источников энергии при этом используются углеводы, жиры и белки. При полном или частичном расщеплении этих веществ освобождается часть энергии, аккумулированная в их химических связях. Эта освободившаяся энергия и обеспечивает ресинтез АТФ (см. табл.).

Энергетические резервы человека (с массой тела 75 кг)

Биоэнергетические возможности организма являются наиболее важным фактором, лимитирующим его физическую работоспособность. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (бескислородным) и аэробным (окислительным) путем. В зависимости от биохимических особенностей протекающих при этом процессов принято выделять три обобщенных энергетических системы, обеспечивающих физическую работоспособность человека:

алактная анаэробная, или фосфагенная, связанная с процессами ресинтеза АТФ преимущественно за счет энергии другого высокоэнергетического фосфатного соединения - креатинфосфата (КрФ);

гликолитическая (лактацидная) анаэробная, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты (МК);

аэробная (окислительная), связанная с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности (см. рис.1).

Рис. 1. Динамика скорости энергопоставляющих процессов в работающих мышцах в зависимости от продолжительности упражнения (по Волковоу Н.И., 1986)


Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Фосфагенная система представляет собой наиболее быстро мобилизуемый источник энергии. Ресинтез АТФ за счет креатинфосфата во время мышечной работы осуществляется почти мгновенно. При отщеплении фосфатной группы от КрФ высвобождается большое количество энергии, которая непосредственно используется для восстановления АТФ. Поэтому КрФ является самым первым энергетическим резервом мышц, используемым как немедленный источник регенерации АТФ. АТФ и КрФ действуют как единая система энергоснабжения мышечной деятельности. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной, и играет основную роль в обеспечении кратковременной работы предельной мощности, осуществляемой с максимальными по силе и скорости сокращениями мышц: при выполнении кратковременных усилий "взрывного" характера, спуртов, рывков, как, например, спринтерский бег, прыжки, метания или удары рукой и ногой в рукопашном бою и т. п. Наибольшая мощность алактатного анаэробного процесса достигается в упражнениях продолжительностью 5-6 секунд и у высоко подготовленных спортсменов достигает уровня 3700 кДж/кГ в минуту. Однако емкость этой системы невелика в связи с ограниченностью запасов АТФ и КрФ в мышцах. Вместе с тем, время удержания максимальной анаэробной мощности зависит не столько от емкости фосфагенной системы, сколько от той ее части, которая может быть мобилизована при работе с максимальной мощностью. Расходуемое количество КрФ во время выполнения упражнений максимальной мощности составляет всего лишь примерно одну треть от его общих внутримышечных запасов. Поэтому продолжительность работы максимальной мощности обычно даже у высококвалифицированных спортсменов не превышает 15-20 секунд.

Анаэробный гликолиз начинается практически с самого начала работы, но достигает своей максимальной мощности лишь через 15-20 секунд работы предельной интенсивности, и эта мощность не может поддерживаться более 2.5 - 3.0 минут.

Гликолитическая анаэробная система характеризуется достаточно большой мощностью, достигая у высокотренированных людей уровня примерно 2500 кДж/кГ в минуту. Энергетическими субстратами при этом служат углеводы - гликоген и глюкоза. Гликоген, запасаемый в мышечных клетках и печени - это цепочка молекул глюкозы (глюкозных единиц). При расщеплении гликогена его глюкозные единицы последовательно отщепляются. Каждая глюкозная единица из гликогена восстанавливает 3 молекулы АТФ, а молекула глюкозы - только 2 молекулы АТФ. Из каждой молекулы глюкозы образуется 2 молекулы молочной кислоты (МК). Поэтому при большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество МК. Накапливающаяся в работающих мышечных клетках МК легко диффундирует в кровь и, до определенной степени концентрации, связывается буферными системами крови для сохранения внутренней среды организма (гомеостазиса). Если количество МК, образующейся в процессе выполнения работы гликолитической анаэробной направленности, превышает возможности буферных систем крови, то это приводит к их быстрому исчерпанию и вызывает сдвиг кислотно-щелочного равновесия крови в кислую сторону. В конечном итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. При этом снижается скорость и самого гликолиза. Значительное закисление приводит также к уменьшению скорости алактатного анаэробного процесса и общему снижению мощности работы.

Продолжительность работы в гликолитическом анаэробном рижиме лимтируется в основном не количеством (емкостью) ее энергетических субстратов, а уровнем концентрации МК и степенью тканевой адаптации к кислотным сдвигам в мышцах и крови. Во время выполнения мышечной работы, обеспечиваемой преимущественно анаэробным гликолизом, резкого истощения мышечного гликогена и глюкозы в крови и печени не происходит. В процессе физической подготовки гипогликемия (снижение концентрации глюкозы в крови) может возникнуть по другим причинам.Для высокого уровня проявления гликолитической анаэробной способности (специальной выносливости) существенное значение имеет степень тканевой адаптации к происходящим при этом сдвигам кислотно-щелочного равновесия. Здесь особо выделяется фактор психической устойчивости, который позволяет при напряженной мышечной деятельности волевым усилием преодолевать возникающие с развитием утомления болезненные ощущения в работающих мышцах и продолжать выполнять работу, несмотря на усиливающееся стремление к ее прекращению.

При переходе от состояния покоя к мышечной деятельности потребность в кислороде (его запрос) возрастает во много раз. Однако, необходимо по крайней мере 1-2 минуты, чтобы усилилась деятельность кардио-респираторной системы, и обогащенная кислородом кровь могла быть доставлена к работающим мышцам. Потребление кислорода работающими мышцами увеличивается постепенно, по мере усиления деятельности систем вегетативного обеспечения. С увеличением длительности упражнения до 5-6 минут быстро наращивается скорость процессов аэробного образования энергии и, при увеличении продолжительности работы более 10 минут, энергообеспечение осуществляется уже почти целиком за счет аэробных процессов.Однако, мощность аэробной системы энегообеспечения примерно в 3 раза ниже мощности фосфагенной, и в 2 раза - мощности анаэробной гликолитической системы (см. табл.)

Основные биоэнергетические характеристики метаболических процессов - источников энергии при мышечной деятельности

Вместе с тем, аэробный механизм ресинтеза АТФ отличается наибольшей производительностью и экономичностью. В повседневных условиях жизни на его долю приходится иногда более 90% от общего количества энергопродукции организма. В качестве субстратов окисления при этом используются все основные питательные вещества: углеводы, жиры в виде аминокислот. Вклад белков в общий объем аэробной энергопродукции очень мал. А вот углеводы и жиры используются в качестве субстратов аэробного окисления до тех пор, пока они доступны мышцам.

Аэробное расщепление углеводов до определенной стадии (до образования пировиноградной кислоты) осуществляется так же, как и при анаэробном гликолизе. Но в аэробных условиях пировиноградная кислота не превращается в молочную кислоту, а окисляется далее до углекислого газа и воды, которые легко выводятся из организма. При этом из одной глюкозной единицы гликогена в конечном итоге образуется 39 молекул АТФ. Таким образом, аэробное окисление гликогена более эффективно, чем анаэробное. Еще больше энергии выделяется при окислении жиров. В среднем 1 моль смеси различных специфических организму человека жирных кислот обеспечивает ресинтез 138 молей АТФ. При одинаковом по весу расходе гликогена и жирных кислот, последние обеспечивают почти в три раза больше энергии, чем углеводы. Жиры, таким образом, обладают наибольшей энергоемкостью из всех биоэнергетических субстратов (см. табл.)

В мой мир

Мониторинг частоты сердечных сокращений (ЧСС), совместно или без контроля уровня молочной кислоты (лактата), - на сегодняшний день неотъемлемый элемент тренировки, позволяющий спортсмену и наставнику подобрать оптимальную интенсивность, что позволяет при меньших нагрузках добиваться более высоких результатов. Эффективная тренировка, ведущая к высоким достижениям, возможна только при хорошем знании и правильном применении принципов энергообеспечения физической деятельности.

Энергетические системы

Аденозинтрифосфат (АТФ) в организме человека является универсальным источником энергии, которая высвобождается при распаде АТФ до аденозинфосфата (АДФ) и используется мышцами для выполнения механической работы. Запасы АТФ в мышцах незначительны, расходуются за 2 секунды. Системы ресинтеза АТФ (фосфатная, лактатная и кислородная) поддерживают относительное постоянство этого вещества.

Фосфатная система ресинтеза АТФ (анаэробная, алактатная) включает использование запасов АТФ в мышцах (2сек) и быстрое восстановление АТФ из креатинфосфата (КрФ), которого хватит ещё на 6-8 секунд. Система важна для всех взрывных, кратковременных и стремительных действий. Уже через 30 секунд после нагрузки АТФ и КрФ восстанавливаются на 70%, а через 3-5 минут полностью. Важно - направленная тренировка соответствующими упражнениями с достаточными периодами отдыха не только повышает запасы АТФ и КрФ, но и ускоряет процесс распада и восстановления АТФ за счёт увеличения ферментативной базы, поэтому и представителям стайерских дисциплин полезно регулярно включать в основную тренировку краткие (не более 10 с), мощные, быстрые упражнения.

Кислородная система ресинтеза АТФ (аэробная) является наиболее важной в тренировках на выносливость, поскольку она может поддерживать физическую работу в течение длительного времени, снабжая энергией посредством химического взаимодействия пищевых веществ (главным образом, жиров и углеводов) с кислородом. Производительность кислородной системы зависит от количества кислорода, которое способен усвоить организм человека (МПК - максимальное потребление кислорода). Углеводы - более эффективное топливо по сравнению с жирами, т.к. при одинаковом потреблении энергии на их окисление требуется на 12% меньше кислорода, но запасов углеводов (гликоген печени и мышц) хватит на 60-90 минут активности, запасы жира практически неисчерпаемы, при окислении не образуется лактат. Чем выше интенсивность нагрузки, тем больше вклад углеводов в энергообразование. Но при одинаковой интенсивности аэробной нагрузки тренированный спортсмен будет использовать больше жиров и меньше углеводов, чем не тренированный, т.е. будет расходовать энергию более экономно. Важно - обязательное включение длительных медленных тренировок в видах на выносливость.

Распад углеводов происходит в два этапа, на первом, протекающем без участия кислорода, образуется молочная кислота (лактат), которая используется в ресинтезе АТФ на втором этапе с участием кислорода. Пока потребляемого кислорода достаточно, молочная кислота не будет накапливаться в организме. Важно - элиминация лактата, основанная на его использовании на втором этапе углеводного энергообеспечения лежит в основе обязательных низкоинтенсивных заминок, активного отдыха и восстановительных тренировок.

Лактатная система

Итак, при росте интенсивности нагрузки и недостатке кислорода молочная кислота, образовавшаяся в первой анаэробной фазе, не нейтрализуется полностью во второй, аэробной, в результате накапливается в работающих мышцах, что приводит к ацидозу, или закислению мышц, основной причине мышечной усталости. При превышении определённого уровня интенсивности (который варьируется от человека к человеку) происходит активация механизма, посредством которого организм переходит на полностью анаэробное энергообеспечение, где в качестве источника используются исключительно углеводы. Ускорение, подъём, финишный рывок - за них ответственна лактатная система. При нарастающем ацидозе спортсмен не способен поддерживать тот же уровень нагрузки, что приводит достаточно быстро к резкому снижению интенсивности или отказу выполнять нагрузку.

Важно - в самом начале любого упражнения, независимо от его интенсивности энергообеспечение происходит только анаэробным путём. Каждый раз организму требуется несколько минут, чтобы аэробная система включилась в работу. Соответственно, разминка обязательна.

Ацидоз повреждает аэробную ферментативную систему мышечной клетки, что снижает аэробные способности. Если клетки повреждены ацидозом, то может потребоваться несколько дней, прежде чем ферментативная система начнёт снова нормально функционировать и аэробные возможности восстановятся, а аэробные тренировки будут эффективными. Повреждение мышечных стенок в результате ацидоза является причиной утечки веществ из мышечных клеток в кровь, замедляется образование КрФ, нарушается работа сократительного аппарата, страдает координация, тренировки на технику или скорость неэффективны, возрастает риск травм.

Типы мышечных волокон

Условно мышечные волокна разделяются на два типа: красные (тип1, медленно сокращающиеся) и белые (тип2, быстро сокращающиеся). Между мужчинами и женщинами не существует разницы в соотношении быстрых и медленных мышечных волокон, реакция на тренировку одинаковая. Красные мышечные волокна густо усеяны капиллярами, снабжаются энергией преимущественно аэробно, важны в видах на выносливость. Белые мышечные волокна (выделяют так же подтип2а - анаэробно-аэробные и подтип2в - анаэробные) обладают высокой анаэробной способностью, поэтому максимально используются в скоростно-силовых видах. Соотношение белых и красных волокон у отдельного человека генетически детерминировано, т.е. практически мы изначально рождаемся либо стайерами, либо спринтерами. Под воздействием тренировок некоторое количество белых волокон могут превратиться в красные, к сожалению, обратное действие невозможно. Выраженный стайер никогда не станет спринтером, а у спринтера есть шанс стать хорошим стайером. С возрастом спринтерские способности спортсмена снижаются быстрее, чем способности к выполнению длительной работы. Важно - в видах на выносливость обязательно находить время для скоростно-силовых тренировок, чтобы поддерживать соответствующие качества на достойном уровне.

Целенаправленная тренировка

Тренировка должна быть направлена именно на ту энергетическую систему, которая участвует в энергообеспечении конкретной спортивной деятельности. Результаты марафонца зависят от его способности выполнять длительную работу, поэтому его тренировки должны быть нацелены на совершенствование кислородной системы и расширение аэробных способностей. Для спринтера важны максимальные возможности его фосфатной системы, поэтому его тренировки должны быть направлены на увеличение числа высокоэнергетических фосфатов. В некоторых видах, например в беге на средние дистанции (400, 800, 1500м), лыжном спринте требуется тренировка все систем энергообеспечения, требуются высокие анаэробно-аэробные способности, спортсмены должны учиться бороться с сильным ацидозом.

Таблица 1. Зависимость подключения энергосистем от продолжительности нагрузки.

Продолжительность Скорость. Фосфатная система Аэробные способности. Кислородная система Анаэробные способности: фосфатная и лактатная системы
130 - 180 мин 0 95 5
28 - 50 мин 5 80 15
14 - 26 мин 10 70 20
9 - 16 мин 20 40 40
4 - 6 мин 20 35 55
2 - 3 мин 30 5 65
1 - 1,5 мин 80 5 15
22 - 35 с 98 0 2
10 - 16 с 98 0 2

Зависимость между продолжительностью нагрузки и относительным вкладом различных энергетических систем применима к любому виду спорта. Подключение той или иной энергетической системы зависит от продолжительности нагрузки. Например, для бега на 1 500м (продолжительность 4 - 6 мин) 20% тренировок должно быть направлено на совершенствование фосфатной системы (спринтерские тренировки), 25% - на повышение аэробной выносливости и 55% - на повышение анаэробных возможностей.

Итак, тренировка должна выполняться при определённой (для каждого вида спорта) интенсивности, которая измеряется в разных величинах - % от максимальной ЧСС (ЧССмах) или % от анаэробного порога (АнП). АнП обозначается нагрузка, выше которой организм переключается с аэробного на частично анаэробное. Международные обозначения зон интенсивности следующие: аэробная (А), развивающая (Е от endurance - выносливость, чуть выше анаэробного порога) и анаэробная (Аn). Каждая из трех зон разделяется на 2 подзоны. Существует так же восстановительная зона (R - recreation).

Таблица 2. Зоны интенсивности.

Зона инс-ти Характеристика % от АнП % от ЧССмах
R Восстановительная, очень низкая интенсивность 70 - 80 60 - 70
A1 Аэробная 1, низкая интенсивность 80 - 90 70 - 80
A2 Аэробная 2, средняя интенсивность 90 - 95 80 - 85
E1 Развивающая 1, транзитная зона 95 - 100 85 - 90
E2 Развивающая 2, высокоинтенсивная выносливость 100 - 110 90 - 95
An1 Анаэробная, основана на гликолизе максимальное энергообеспечение - 2-3 мин
An2 Анаэробная 2, основана на фосфатах Максимальное энергобеспечение - до 10с

Тренировка фосфатной системы

Главная цель - истощение высокоэнергетических фосфатов без накопления молочной кислоты. Лучший способ - спринты на максимальной (продолжительность отрезка 6-8сек) или субмаксимальной (20-30с) скоростях, выполняемые повторно (8-10раз) с большими паузами пассивного отдыха (3-5 мин в зависимости от подготовленности). Выполнение лёгкой нагрузки во время отдыха частично блокирует ресинтез АТФ и КрФ, приводит к их недостаточным запасам для следующего ускорения, активации анаэробной системы и накоплению лактата. Руководствуясь показателями ЧСС, управлять спринтерской тренировкой и вносить коррективы невозможно, для этого лучше использовать показатели лактата.

Тренировка лактатной системы

Основная цель - совершенствование способности спортсмена выполнять упражнение при высоких концентрациях лактата. Интенсивные тренировки в анаэробной зоне, лучший - интервальный метод, оптимальная продолжительность отрезков максимального усилия от 30с до 3-х минут, активный отдых от 30с до нескольких минут, концентрация лактата не должна снижаться слишком сильно. Важно - после напряжённых анаэробных нагрузок обязательны очень лёгкие восстановительные тренировки.

Тренировка кислородной системы

Лучший метод - тренировки на выносливость, то есть нагрузки с субмаксимальной мощностью в течение длительного времени без накопления лактата.

Интенсивная аэробная тренировка выполняется в виде интервальной работы (с короткими или длинными рабочими отрезками). В первом случае кислородная система полностью активируется, ЧСС 90% ЧССмах, т.е. на уровне или чуть выше анаэробного порога, отрезки 2-8 мин., количество интервалов 5 -8, отдых 4-6 мин., небольшое повышение лактата до 5-6 ммоль/л допустимо. Во втором случае, ЧСС 85-90% ЧССмах, отрезки 8-20 мин., количество 4-5, отдых 5 мин, лактат 3-4 ммоль/л. Данные тренировка не должна проводиться чаще 1-2 раз в неделю. Эффективны при хорошем самочувствии. При сопутствующей усталости или недостаточном восстановлении резко возрастает опасность перетренировки.

Промежуточная аэробная тренировка выполняется со средней интенсивностью (80-85% ЧССмах), лактат не накапливается, продолжительность зависит от соревнований, к которым готовиться спортсмен. Соревновательная дистанция обычно преодолевается 1 раз за неделю.

Экстенсивная аэробная тренировка представляет длительную непрерывную работу при ЧСС 70-80% ЧССмах продолжительностью от 90 мин, тренируют жировой обмен, часто совмещают с промежуточной аэробной тренировкой.

Восстановительная тренировка

Неотъемлемая часть общего тренировочного процесса. Работа при интенсивности менее 70% от ЧССмах не улучшает аэробные способности, но в большинстве случаев более выгодна для восстановления, чем пассивный отдых (см.выше).

*По книге - ЧСС, ЛАКТАТ И ТРЕНИРОВКИ НА ВЫНОСЛИВОСТЬ. П.ЯНСЕН. ТУЛОМА 2007г.

В книге изложены теория, практика и анализ тренировки спортсменов на выносливость на основе мониторинга частоты сердечных сокращений (ЧСС) и уровня молочной кислоты (лактата) в крови, приведены тесты нахождения анаэробного порога и оценки функционального состояния, обсуждаются проблемы перетренированности и спортивного сердца.

Общая характеристика аэробной системы энергообеспечения

Аэробная система энергообеспечения значительно уступает алактатной и лактатной по мощности энергопродукции, скорости включения в обеспечение мышечной деятельности, однако многократно превосходит по ёмкости и экономичности (табл. 1).

Таблица № 1. Энергообеспечение мышечной работы

Источники Пути Образования Время активации до максимального уровня Срок действия Продолжительность максимального выделения энергии
Алактатные анаэробные АТФ, креатинфосфат 0 До 30 с До 10 с
Лактатные анаэробные Гликолиз с образованием лактата 15 – 20 с От 15 – 20 с до 6 – 6 мин От 30 с до 1 мин 30 с
Аэробные Окисление углеводов и жиров кислородом воздуха 90 – 180 с До нескольких часов 2 – 5 мин и более

Особенностью аэробной системы является то, что образование АТФ в клеточных органелах-митохондриях, находящихся в мышечной ткани происходит при участии кислорода, доставляемого кислородтранспортной системой. Это предопределяет высокую экономичность аэробной системы, а достаточно большие запасы гликогена в мышечной ткани и печени, а также практически неограниченные запасы липидов – её ёмкость.

В наиболее упрощённом виде деятельность аэробной системы энергообеспечения осуществляется следующим образом. На первом этапе в результате сложных процессов происходит преобразование как гликогена, так и свободных жирных кислот (СЖК) в ацетил-кофермент А (ацетил-КоА) – активную форму уксусной кислоты, что обеспечивает протекание всех последующих процессов энергообразования по единой схеме. Однако до момента образования ацетил-КоА окисление гликогена и СЖК происходит самостоятельно.

Все многочисленные химические реакции, происходящие в процессе аэробного ресинтеза АТФ, можно разделить на три типа: 1 – аэробный гликолиз; 2 – цикл Кребса, 3 - система транспорта электронов (рис. 7).

Рис. 7. Этапы реакций ресинтеза АТФ в аэробном процессе

Первым этапом реакций является аэробный гликолиз, в результате которого осуществляется расщепление гликогена с образованием СО2 и Н2О. Протекание аэробного гликолиза происходит по той же схеме, что и протекание рассмотренного выше анаэробного гликолиза. В обоих случаях в результате химических реакций гликоген преобразуется в глюкозу, а глюкоза – в пировиноградную кислоту с ресинтезом АТФ. В этих реакциях кислород не участвует. Присутствие кислорода обнаруживается в дальнейшем, когда при его участии пировиноградная кислота не преобразуется в молочную кислоту в молочную кислоту, а затем в лактат, что имеет место в процессе анаэробного гликолиза, а направляется в аэробную систему, конечными продуктами которой оказывается углекислый газ (СО2), выводимый из организма лёгкими, и вода (рис. 8)


Рис. 8. Схематическое протекание анаэробного и аэробного гликолиза

Расщепление 1 моля гликогена на 2 моля пировиноградной кислоты происходит с выделением энергии, достаточной для ресинтеза 3 молей АТФ: Энергия + 3АДФ + Фн → 3АТФ

Из образовавшейся в результате расщепления гликогена пировиноградной кислоты сразу выводится СО2, превращая её из трёхуглеродного соединения в двухуглеродное, которое сочетаясь с коферментом А, образует ацетил- КоА, который включается во второй этап аэробного образования АТФ – цикл лимонной кислоты или цикл Кребса.

В цикле Кребса протекает серия сложных химических реакций, в результате которых происходит окисление пировиноградной кислоты – выведение ионов водорода (Н+) и электронов (е-), которые в итоге попадают в систему транспорта кислорода и участвуют в реакциях ресинтеза АТФ на третьем этапе, образуя СО2, который диффундируется в кровь и переносится в лёгкие, из которых и выводится из организма. В самом цикле Кребса образуется только 2 моля АТФ (рис. 9).


Рис. 9. Схематическое изображение окисления углеродов в цикле Кребса

Третий этап протекает в цепи транспорта электронов (дыхательной цепи). Реакции, происходящие с участием коферментов, в общем виде сводятся к следующему. Ионы водорода и электроны, выделяемые в результате реакций, протекавших в цикле Кребса и в меньшей мере в процессе гликолиза, транспортируются к кислороду, чтобы в результате образовать воду. Одновременно выделяемая энергия в серии сопряжённых реакций используется для ресинтеза АТФ. Весь процесс, происходящий по цепи передачи электронов кислороду называется окислительным фосфорилированием. В процессах, происходящих в дыхательной цепи, потребляется около 90 % поступающего к клеткам кислорода и образуется наибольшее количество АТФ. В общей сложности окислительная система транспорта электронов обеспечивает образование 34 молекул АТФ из одной молекулы гликогена.

Усвоение и абсорбция углеводов в кровоток происходит в тонком кишечнике. В печени они превращаются в глюкозу, которая в свою очередь может быть превращена в гликоген и депонируется в мышцах и печени, а также используется различными органами и тканями в качестве источника энергии для поддержания деятельности. В организме здорового с достаточным уровнем физической подготовленности мужчины с массой тела 75 кг содержится 500 – 550 г углеводов в виде гликогена мышц (около 80 %), гликогена печени (примерно 16 – 17 %), глюкозы крови (3 – 4 %), что соответствует энергетическим запасам порядка 2000 – 2200 ккал.

Гликоген печени (90 – 100 г) используется для поддержания уровня глюкозы крови, необходимого для обеспечения нормальной жизнедеятельности различных тканей и органов. При продолжительной работе аэробного характера, приводящей к истощению запасов мышечного гликогена, часть гликогена печении может использоваться мышцами.

Следует учитывать, что гликогенные запасы мышц и печени могут существенно увеличиваться под влиянием тренировки и пищевых манипуляций, предусматривающих углеводное истощение и последующее углеводное насыщение. Под влиянием тренировки и специального питания концентрация гликогена в печени может увеличиться в 2 раза. Увеличение количества гликогена повышает его доступность и скорость утилизации при выполнении последующей мышечной работы.

При продолжительных физических нагрузках средней интенсивности образование глюкозы в печени возрастает в 2 – 3 раза по сравнению с образованием её в состоянии покоя. Напряжённая продолжительная работа может привести к 7 – 10-кратному увеличению образования глюкозы в печени по сравнению с данными, полученными в состоянии покоя.

Эффективность процесса энергообеспечения за счёт жировых запасов определяется скоростью протекания липолиза и скоростью кровотока в адипозной ткани, что обеспечивает интенсивную доставку свободных жирных кислот (СЖК) к мышечным клеткам. Если работа выполняется с интенсивностью 50 – 60 % VO2 max, отмечается максимальный кровоток в адипозной ткани, что способствует максимальному поступлению в кровь СЖК. Более интенсивная мышечная работа связана с интенсификацией мышечного кровотока при одновременном уменьшении кровоснабжения адипозной ткани и, следовательно, с ухудшением доставки СЖК в мышечную ткань.

Хотя в процессе мышечной деятельности липолиз разворачивается, однако уже на 30 – 40-й минутах работы средней интенсивности её энергообеспечения в равной мере осуществляется за счёт окисления как углеводов, так и липидов. Дальнейшее продолжение работы, приводящее к постепенному исчерпанию ограниченных углеводных ресурсов, связано с увеличением окисления СЖК; например, энергообеспечение второй половины марафонской дистанции в беге или шоссейных велогонках (более 100 км) преимущественно связано с использованием жиров.

Несмотря на то что использование энергии от окисления липидов имеет реальное значение для обеспечения выносливости только при продолжительной мышечной деятельности, начиная уже с первых минут работы с интенсивностью, превышающей 60 % VO2max, отмечается освобождение из триацилглицеридов СЖК, их поступление и окисление в сокращающихся мышцах. Через 30 – 40 мин после начала работы скорость потребления СЖК возрастает в 3 раза, а после 3 – 4 часов работы – в 5 – 6 раз.

Внутримышечная утилизация триглицеридов существенно возрастает под влиянием тренировки аэробной направленности. Эта адаптационная реакция проявляется как в быстроте развёртывания процесса образования энергии за счёт окисления СЖК, поступивших из трицеридов мышц, так и в возрастании их утилизации из мышечной ткани.

Не менее важным адаптационным эффектом тренированной мышечной ткани является повышение её способности к утилизации жировых запасов. Так, после 12-недельной тренировки аэробной направленности способность к утилизации триглицеридов в работающих мышцах резко возрастала и достигала 40 %.

Роль белков для ресинтеза АТФ не существенна. Однако углеродный каркас многих аминокислот может быть использован в качестве энергетического топлива в процессе окислительного метаболизма, что проявляется при продолжительных нагрузках средней интенсивности, при которых вклад белкового метаболизма в энергопродукцию может достичь 5 – 6 % общей потребности в энергии.

Благодаря значительным запасам глюкозы и жиров в организме и неограниченной возможности потребления кислорода их атмосферного воздуха, аэробные процессы, обладая меньшей мощностью по сравнению с анаэробными, могут обеспечивать выполнение работы в течении длительного времени (т. е. их ёмкость очень велика при очень высокой экономичности). Исследования показывают, что, например в марафонском беге за счёт использования мышечного гликогена работа мышц продолжается в течении 80 мин. Определённое количество энергии может быть мобилизовано за счёт гликогена печени. В сумме это может обеспечить 75 % времени, необходимого для преодоления марафонской дистанции. Остальная энергия образуется в результате окисления жирных кислот. Однако скорость их диффузии из крови в мышцы ограничена, что лимитирует производство энергии за счёт этих кислот. Энергии, продуцируемой вследствие окисления СЖК, достаточно для поддержания интенсивности работы мышц на уровне 40 – 50 % VO2max, ВТО времы как сильнейшие марафонцы способны преодолевать дистанцию с интенсивностью, превышающей 80 – 90 % VO2max, что свидетельствует о высоком уровне адаптации аэробной системы энергообеспечения, позволяющем не только обеспечить оптимальное сочетание использования углеводов, жиров, отдельных аминокислот и метаболитов для производства энергии, но и экономное расходование гликогена.

Таким образом, вся совокупность реакций, обеспечивающих аэробное окисление гликогена, выглядит следующим образом. На первом этапе в результате аэробного гликолиза образуется пировиноградная кислота и ресинтезируется некоторое количество АТФ. На втором, в цикле Кребса, производится СО2, а ионы водорода (Н+) и электроны (е-) вводятся в систему транспорта электронов также с ресинтезом некоторого количества АТФ. И наконец, заключительный этап связан с образованием Н2О из Н+, е- и кислорода с высвобождением энергии, используемой для ресинтеза подавляющего количества АТФ. Жиры и белки, используемые в топлива для ресинтеза АТФ, также проходят через цикл Кребса и систему транспорта электронов (рис. 10).


Рис. 10. Схематическое изображение функционирования аэробной системы энергообеспечения

Лактатная система энергообеспечения.

В лактатной системе энергообеспечения ресинтез АТФ происходит за счёт расщепления глюкозы и гликогена при отсутствии кислорода. Этот процесс принято обозначать как анаэробный гликолиз. Анаэробный гликолиз является значительно более сложным химическим процессом по сравнению с механизмами расщепления фосфогенов в алактатной системе энергообеспечения. Он предусматривает протекание серии сложных последовательных реакций, в результате которых глюкоза и гликоген расщепляются до молочной кислоты, которая в серии сопряжённых реакций используется для ресинтеза АТФ (рис. 2).


Рис. 2. Схематическое изображение процесса анаэробного гликолиза

В результате расщепления 1 моля глюкозы образуется 2 моля АТФ, а при расщеплении 1 моля гликогена – 3 моля АТФ. Одновременно с высвобождением энергии в мышцах и жидкостях организма происходит образование пировиноградной кислоты, которая затем преобразуется в молочную кислоту. Молочная кислота быстро разлагается с образованием её соли – лактата.

Накопление молочной кислоты в результате интенсивной деятельности гликолитического механизма приводит к большому образованию лактата и ионов водорода (Н+) в мышцах. В результате, несмотря на действие буферных систем, постепенно снижается мышечный pH с 7,1 до 6,9 и даже до 6,5 – 6,4. Внутриклеточный pH, начиная с уровня 6,9 – 6,8 замедляет интенсивность гликолитической реакции восстановления запасов АТФ, а при pH 6,5 – 6,4 расщепление гликогена прекращается. Таким образом, именно повышение концентрации молочной кислоты в мышцах ограничивает расщепление гликогена в анаэробном гликолизе.

В отличие от алактатной системы энергообеспечения, мощность которой достигает максимальных показателей уже на первой секунде работы, процесс активизации гликолиза разворачивается значительно медленнее и достигает высоких величин энергопродукции только на 5 – 10 секундах работы. Мощность гликолитического процесса значительно уступает мощности креатинфосфокиназного механизма, однако является в несколко раз более высокой по сравнению с возможностями системы аэробного окисления. В частности, если уровень энергопродукции АТФ за счёт распада КФ составляет 9 – 10 ммоль/кг с.м.т./с (сырая масса ткани), то при подключении гликолиза объём производимой АТФ может увеличиться до 14 ммоль/кг с.м.т./с. За счёт использования обоих источников ресинтеза АТФ в течении 3-минутной интенсивной работы мышечная система человека способна вырабатывать около 370 ммоль/кг с.м.т. При этом на долю гликолиза приходится не менее 80 % общей продукции. Максимальная мощность лактатной анаэробной системы проявляется на 20 – 25-й секундах работы, а на 30 – 60-й секундах гликолитический путь ресинтеза АТФ является основным в энергообеспечении работы.

Ёмкость лактатной анаэробной системы обеспечивает её превалирующее участие в энергопродукции при выполнении работы продолжительность до 30 – 90 с. При более продолжительной работе роль гликолиза постепенно снижается, однако остаётся существенной и при более продолжительной работе – до 5 – 6 мин. Общее количество энергии, которое образуется за счёт гликолиза, наглядно может быть оценено и по показателям лактата крови после выполнения работы, требующей предельной мобилизации лактатной системы энергообеспечения. У нетренированных людей предельная концентрация лактата в крови составляет 11 – 12 ммоль/л. Под влиянием тренировки ёмкость лактатной системы резко возрастает и концентрация лактата в крови может достигать 25 – 30 ммоль/л и выше.

Максимальные величины энергообразования и лактата в крови у женщин на 30 – 40 % ниже по сравнению с мужчинами такой же спортивной специализации. Юные спортсмены по сравнению со взрослыми отличаются невысокими анаэробными возможностями. максимальная концентрация лактата в крови при предельных нагрузках анаэробного характера у них не превышает 10 ммоль/кг, что в 2 – 3 раза ниже, чем у взрослых спортсменов.

Таким образом, адаптационные реакции лактатной анаэробной системы могут протекать в различных направлениях. Одним из них является увеличение подвижности гликолитического процесса, что проявляется в значительно более быстром достижении его максимальной производительности (с 15 – 20 до 5 – 8 с). Вторая реакция связана с повышением мощности анаэробной гликолитической системы, что позволяет ей продуцировать значительно большее количество энергии в единицу времени. Третья реакция сводится к повышению ёмкости системы и, естественно общего объёма продуцируемой энергии, вследствие чего увеличивается продолжительность работы, преимущественно обеспечиваемая за счёт гликолиза.

Максимальное значение лактата и pH в артериальной крови в процессе соревнований по некоторым видам спорта представлены на рис. 3.


Рис.3. Максимальные значения лактата и pH в артериальной крови у спортсменов, специализирующихся в различных видах спорта: а – бег (400, 800 м); б – скоростной бег на коньках (500, 1000м); в – гребля (2000 м); г – плавание 100 м; д – бобслей; е – велогонки (100 км)
(Eindemann, Keul, 1977)

Они дают достаточно полное представление о роли лактатных анаэробных источников энергии для достижения высоких спортивных результатов разных видах спорта и об адаптационных резервах системы анаэробного гликолиза.

При выборе оптимальной продолжительности работы, обеспечивающей максимальную концентрацию лактата в мышцах, следует учитывать, что максимальное содержание лактата отмечается при использовании предельных нагрузок, продолжительность которых колеблется в пределах 1 – 6 мин. Увеличение продолжительности работы связано с уменьшением концентрации лактата в мышцах.

Для выбора оптимальной методики повышения анаэробных возможностей важно проследить особенности накопления лактата при прерывистой работе максимальной интенсивности. Например, одноминутные предельные нагрузки с четырёхминутными паузами приводят к постоянному увеличению лактата в крови (рис. 4) при одновременном снижениипоказателей кислотно-основного состояния (рис. 5).


Рис. 4. Изменение концентрации лактата в крови в процессе прерывистой максимальной нагрузки (одноминутные упражнения с интенсивностью 95 %, разделённые периодами отдыха длительностью 4 мин) (Hermansen, Stenswold, 1972)

Рис. 5. Изменение pH крови при прерывистом выполнении одноминутных нагрузок максимальной интенсивности (Hollman, Hettinger, 1980)

Аналогичный эффект отмечается и при выполнении 15 – 20-секундных упражнений максимальной мощности с паузами около 3 минут (рис. 6).


Рис. 6. Динамика биохимических изменений у спортсменов при повторном выполнении кратковременных упражнений максимальной мощности (Н. Волков и др., 2000)

Алактатная система энергообеспечения.

Эта система энергообеспечения является наименее сложной, отличается высокой мощностью освобождения энергии и кратковременностью действия. Образование энергии в этой системе происходит за счёт расщепления богатых энергией фосфатных соединений – аденозинтрифосфата (АТФ) и креатинфосфата (КФ). Энергия, образующаяся в результате распада АТФ, в полной мере включается в процесс энергообеспечения работы уже на первой секунде. Однако уже на второй секунде выполнение работы осуществляется за счёт креатинфосфата (КФ), депонированного в мышечных волокнах и содержащего богатые энергией фосфатные соединения. Расщепление этих соединений приводит к интенсивному высвобождению энергии. Конечными продуктами расщепления КФ являются креатин (Кр) и неорганический фосфат (Фн). Реакция стимулируется ферментом креатинкиназа и схематически выглядит следующим образом:


Энергия, высвобождаемая при распаде КФ, является доступной для процесса ресинтеза АТФ, поэтому за быстрым расщеплением АТФ в процессе мышечного сокращения незамедлительно следует его ресинтез из АДФ и Фн с привлечением энергии, высвобождаемой при расщеплении КФ:


Ещё одним механизмом алактатной системы энергообеспечения является так называемая миокиназная реакция, которая активизируется при значительном мышечном утомлении, когда скорость расщепления АТФ существенно превышает скорость её ресинтеза. Миокиназная реакция стимулируется ферментом миокиназа и заключается в переносе фосфатной группы с одной молекулы на другую и образованием АТФ и аденозинмонофосфата (АМФ):


Аденозинмонофосфат (АМФ), являющийся побочным продуктом миокиназной реакции, содержит последнюю фосфатную группу и в отличие от АТФ и АДФ не может быть использован в качестве источника энергии. Миокиназная реакция активизируется в условиях, когда в силу утомления другие пути ресинтеза АТФ исчерпали свои возможности.

Запасы КФ не могут быть восполнены в процессе выполнения работы. Для его ресинтеза может быть использована только энергия, высвобождаемая в результате распада АТФ, что оказывается возможным лишь в восстановительном периоде после окончания работы.

Алактатная система, отличаясь очень высокой скорость освобождения энергии, одновременно характеризуется крайне ограниченной ёмкостью. Уровень максимальной алактатной анаэробной мощности зависит от количества фосфатов (АТФ и КФ) в мышцах и скорости их использования. Под влиянием тренировки спринтерского характера показатели алактатной анаэробной мощности могут быть значительно повышены. Под влиянием специальной тренировки мощность алактатной анаэробной системы может быть увеличена на 40 -80 %. Например, спринтерская тренировка в течении 8 недель бегунов привела к увеличению содержания АТФ и КФ в скелетной мышце в состоянии покоя примерно на 10 %.

Под влиянием тренировки в мышцах не только увеличивается количество АТФ и Кф, но и существенно возрастает способность мышечной ткани к их расщеплению. Ещё одной адаптационной реакцией, определяющей мощность алактатной анаэробной системы, является ускорение ресинтеза фосфатов за счёт повышения активности ферментов, в частности креатинфосфокиназы и миокиназы.

Под влиянием тренировки существенно возрастают и показатели максимальной ёмкости алактатной анаэробной стстемы энергообеспечения. Ёмкость алактатной анаэробной системы под влиянием целенаправленной многолетней тренировки иожет возрастать в 2,5 раза. Это подтверждается показателями максимального алактатного О2-долга: у начинающих спортсменов он составляет 21,5 мл/кг, у спортсменов высокого класса может достигать 54,5 мл/кг.

Увеличение ёмкости алактатной энергетической системы проявляется и в продолжительности работы максимальной интенсивности. Так, у лиц не занимающихся спортом, максимальная мощность алактатного анаэробного процесса, достигнутая через 0,5 – 0,7 с после начала работы, может удерживаться не более 7 – 10 с, то у спортсменов высшего класса, специализирующихся в спринтерских дисциплинах, она может проявляться в течение 15 – 20 с. При этом большая продолжительность работы сопровождается и значительно большей её мощностью, что обусловливается высокой скоростью распада и ресинтеза высокоэнергетических фосфатов.

Концентрация АТФ и КФ у мужчин и женщин практически одинакова – около 4 ммоль/кг АТФ и 16 ммоль/кг КФ. Однако общее количество фосфогенов, которые могут использоваться при мышечной деятельности, у мужчин значительно больше, чем у женщин, что обусловлено большими различиями в общем объёме скелетной мускулатуры. Естественно, что у мужчин значительно больше ёмкость алактатной анаэробной системы энергообеспечения.

В заключении следует отметить, что лица с высоким уровнем алактатной анаэробной производительности, как правило, имеют низкие аэробные возможности, выносливость к длительной работе. Одновременно у бегунов на длинные дистанции алактатные анаэробные возможности не только не сравнимы с возможностями спринтеров, но и часто уступают показателям, регистрируемым у лиц, не занимающихся спортом.

Общая характеристика систем энергообеспечения мышечной деятельности

Энергия, как известно, представляет собой общую количественную меру, связывающую воедино все явления природы, разные формы движения материи. Из всех видов энергии, образующейся и использующейся в различных физических процессах(тепловая, механическая, химическая и др.)применительно к мышечной деятельности, основное внимание должно быть сконцентрировано на химической энергии организма, источником которой являются пищевые продукты и её преобразовании в механическую энергию двигательной деятельности человека.

Энергия, высвобождаемая во время расщепления пищевых продуктов, используется для производства аденозинтрифосфата (АТФ), который депонируется в мышечных клетках и является своеобразным топливом для производства механической энергии мышечного сокращения.

Энергию для мышечного сокращения даёт расщепление аденозинтрифосфата (АТФ) до аденозиндифосфата (АДФ) и неорганического фосфата (Ф). Количество АТФ в мышцах невелико и его достаточно для обеспечения высокоинтенсивной работы лишь в течении 1 – 2 с. Для продолжения работы необходим ресинтез АТФ, который производится за счёт энергоотдающих реакций трёх типов. Восполнение запасов АТФ в мышцах позволяет поддерживать постоянный уровень его концентрации, необходимый для полноценного мышечного сокращения.

Ресинтез АТФ обеспечивается как в анаэробных, так и в аэробных реакциях с привлечением в качестве энергетических источников запасов креатинфосфата (КФ) и АДФ, содержащихся в мышечных тканях, а также богатых энергией субстратов (гликоген мышц и печени, запасы липозной ткани и др.). Химические реакции, приводящие к обеспечению мышц энергией протекают в трёх энергетических системах: 1) анаэробной алактатной, 2) анаэробной лактатной (гликолитической), 3) аэробной.

Образование энергии в первых двух системах осуществляется в процессе химических реакций, не требующих наличия кислорода. Третья система предусматривает энергообеспечение мышечной деятельности в результате реакций окисления, протекающих с участием кислорода. Наиболее общие представления о последовательности включения и количественных соотношениях в энергообеспечении мышечной деятельности каждой из указанных систем приведены на рис. 1.

Возможности каждой из указанных энергетических систем определяются мощностью, т. е. скоростью освобождения энергии в метаболических процессах, и ёмкостью, которая определяется величиной и эффективностью использования субстратных фондов.


Рис. 1. Последовательность и количественные соотношения процессов энергообеспечения мышечной деятельности у квалифицированных спортсменов в различных энергетических системах (схема): 1 – алактатной; 2 – лактатной; 3 – аэробной

Рассмотрим энергетическую систему организма подробнее.

Американский учёный Альберт Сент-Дьерди писал, что жизнь представляет собой непрерывный процесс поглощения, преобразования и перемещения энергии различных видов и различных значений.

Этот процесс самым непосредственным образом связан с электрическими свойствами живого вещества, а конкретнее с его электропроводностью.

Электрический ток- это упорядоченное движение заряженных частиц. Носителями электрических зарядов могут быть электроны, ионы и дырки (в полупроводниках). Так же для полупроводников характерна примесная проводимость. При добавлении в кристалл полупроводника атом другого элемента проводимость его увеличивается. Свойства полупроводников очень интересны. Они очень чувствительны к действию света, тепла, радиации и так далее. Если, например, на полупроводник падает свет, то его проводимость резко увеличивается, т.к. электроны с валентной зоны “отрываются” от ядра атома и обеспечивают электронную проводимость. Живое вещество очень похоже на полупроводник. Однако есть и очень принципиальное отличие. В макромолекулах живого энергия связи составляет всего несколько электрон-вольт, тогда как энергия связи в растворах или жидких кристаллах составляет порядка 20-30 эВ. Это свойство очень важно, так как позволяет обеспечить высокую чувствительность. Проводимость осуществляется электронами, которые переходят от одной молекулы к другой благодаря туннельному эффекту. В белковых и других биологических объектах очень высокая подвижность зарядоносителей. В системе углеродно-кислородных и водородно-азотных связей электрон (возбужденный) благодаря туннельному эффекту перемещается по всей системе белковой молекулы. Поскольку подвижность таких электронов очень высокая, то проводимость белковой системы высока.

В живом организме осуществляется и ионная проводимость. Образованию и разделению ионов в живом веществе способствует наличие воды в белковой системе. От него зависит диэлектрическая постоянная белковой системы. Носителями зарядов в этом случае являются ионы водорода - протоны. Только в живом организме все виды проводимости реализуются одновременно. Соотношение между разными проводимостями меняется в зависимости от количества воды в белковой системе. Чем меньше воды, тем меньше ионная проводимость. Если белки высушены, то проводимость осуществляют электроны.

Вообще влияние воды не только в том, что она является источником ионов водорода и таким образом обеспечивает возможность ионной проводимости. Вода играет более сложную роль в изменении общей проводимости. Дело в том, что вода является примесью- донором. Она поставляет электроны (каждая молекула воды разрывается на протон (ядро) и электрон). В результате электроны заполняют дырки, поэтому уменьшается дырочная проводимость. Она уменьшается в миллион раз. В дальнейшем эти электроны передаются белкам, и положение восстанавливается, но не полностью. Общая проводимость после этого всё же остаётся в 10 раз меньше, чем до добавления воды.

Можно добавить к белковым системам не только донор, но и акцептор, который бы приводил к увеличению числа дырок. Установлено, что таким акцептором является, в частности, хлоранил- вещество, содержащее хлор.

В результате дырочная проводимость увеличивается настолько, что общая проводимость белковой системы растёт в миллион раз.

Нуклеиновые кислоты также играют важную роль в живом организме. Несмотря на то, что их структура, водородные связи и так далее отличаются от таковых и у биологических систем, имеются вещества (небиологические) с принципиально подобными электрофизическими свойствами. В частности, таким веществом является графит. Энергия связи у них так же, как и у белков, мала, а удельная проводимость велика, хотя и на несколько порядков меньше, чем у белков. Но электрофизические свойства аминокислот в целом принципиально такие же, как и свойства белков.

Но аминокислоты в составе живого организма обладают и свойствами, которыми белки не обладают. Это очень важные свойства. Благодаря ним механические воздействия в них превращаются в электричество. Это свойство вещества в физике называется пьезоэлектрическим. В нуклеиновых кислотах живого организма тепловое воздействие также приводит к образованию электричества (термоэлектричество). То и другое свойство определяется наличием воды. Ясно, что указанные свойства меняются в зависимости от количества воды. Использование этих свойств в организации и функционировании живого организма очевидно. Так, на зависимости проводимости от освещенности основано действие палочек зрительной сетчатки. Но молекулы живых организмов обладают и электронной проводимостью, как и металлы.

Электрофизические свойства белковых систем и нуклеиновых молекул проявляются только в динамике, только в живом организме. С наступлением смерти электрофизическая активность очень быстро пропадает. Это происходит потому, что прекратилось движение зарядоносителей.

Из сопоставления электрофизических свойств белковых систем и аминокислот с полупроводниками может создаться впечатление, что электрофизические свойства одних и других одинаковы. Это не совсем так. Хотя в белковых системах живого организма имеется и электронная, и дырочная, и ионная проводимость, но они связаны между собой более сложно, чем в неорганических и органических полупроводниках. Там эти проводимости просто складываются и получается суммарная, итоговая проводимость. В живых организмах такое арифметическое сложение проводимостей недопустимо. Здесь 1+1№ 2. Ничего странного в этом нет. Это говорит о том, что эти проводимости не являются независимыми друг от друга. Взаимные их изменения сопровождаются процессами, которые меняют общую проводимость по более сложному закону. Поэтому, говоря об электронной (или другой) проводимости белковых систем, добавляют слово “специфическая”. Процессы, определяющие электрофизические свойства живого, очень сложны. Одновременно с движением электрических зарядов, которое определяет собой электропроводность, действуют друг на друга и электромагнитные поля. Элементарные частицы обладают магнитными моментами, то есть являются магнитиками. Поскольку эти магнитики взаимодействуют друг с другом, то в результате этого воздействия устанавливается определенная ориентация этих частиц. Непрерывно молекулы и атомы меняют свое состояние - они осуществляют непрерывные и скачкообразные (дискретные) переходы из одного электрического состояния в другое. Получая дополнительную энергию, они возбуждаются. Эти переходы оказывают влияние на подвижность зарядоносителей в живом организме. Таким образом, действие электромагнитных полей меняет движение заряженных частиц. С помощью этих зарядоносителей осуществляется передача информации в центральной нервной системе (ЦНС). Сигналы в ЦНС, обеспечивающие работу всего организма как единого целого, являются электрическими импульсами. Но они распространяются значительно медленнее, чем в технических системах. Это обусловлено сложностью процесса. Организм отвечает действием на определенное внешнее воздействие только после того, как он получил информацию об этом воздействии. Ответная реакция организма очень замедлена потому, что сигналы о внешнем воздействии распространяются медленно. Таким образом, скорость защитных реакций живого организма зависит от электрофизических свойств живого вещества. Если же действуют извне электрические и электромагнитные поля, то эта реакция еще больше замедляется. Это установлено как в лабораторных опытах, так и при изучении влияния электромагнитных полей во время магнитных бурь на живые системы. Кстати, если бы реакция живого организма на внешнее воздействие была во много раз быстрее, то человек был бы способен защититься от многих воздействий, от которых он сейчас погибает.

Сегодня люди еще не знают всех свойств комплексной электропроводности живого вещества. Но ясно то, что именно от них зависят те принципиально отличные свойства, которые присущи только живому.

Для раскрытия сущности электрических явлений в живом организме необходимо понять смысл потенциала биологической системы, биопотенциала.

Потенциал-это энергетическая возможность. Для того чтобы оторвать электрон из атома водорода, надо преодолеть силы, которые удерживают его в атоме, то есть, необходима энергия для выполнения этой работы. Энергия элементарных частиц измеряется в электрон-вольтах. Энергия, затраченная на отрыв электрона от ядра атома, называется потенциалом ионизации. Для водорода он равен 13 эВ. Для атомов разных элементов он имеет свои значения.

В живых веществах энергия связи в молекулах составляет 0,01-1 эВ. В неживых молекулах 30-50 эВ. Измерить потенциал ионизации в биологических молекулах очень сложно из-за малости минимальных значений энергии электронов. Поэтому лучше их характеризовать не абсолютными величинами (электрон-вольтами), а относительными. Можно принять за единицу потенциал ионизации воды (речь идет о воде, которая содержится в биологических системах). Теперь можно определить потенциалы ионизации всех других биологических соединений. Тут еще одна тонкость. У атома водорода имеется всего один валентный электрон. Поэтому его потенциал ионизации равен единице. Если атом и молекула более сложные, то их электроны имеют различные энергетические возможности для отрыва. В таких случаях потенциал ионизации относят к валентным электронам, то есть электроны с наименьшей энергией связи.

В биологических системах в результате определенного распределения электрических зарядов имеются электрические поля, поэтому за счет кулоновских сил возможно притяжение и отталкивание электрических зарядов. Энергетической характеристикой электрического поля является разность потенциалов (Δj). Разность потенциалов в биологических системах (биопотенциалов) очень мала до 10 -6 эВ. Величина биопотенциалов является однозначным показателем состояния биосистемы или её частей. Она меняется в том случае, если организм находится в патологическом состоянии. В этом случае меняются реакции живого организма на факторы внешней среды. Электрофизическими свойствами биологических соединений определяется и быстрота реакции живого организма, как единого целого, так и его отдельных анализаторов на действие внешних факторов. От этих свойств зависит и быстрота обработки информации в организме. Её оценивают по величине электрической активности.

Биоэнергетические явления на уровне элементарных частиц являются основой главных функций живого организма, без этих функций жизнь невозможна. Энергетические процессы в клетках (преобразование энергии и сложнейшие биохимические обменные процессы) возможны только благодаря участию в них электронов.

Биопотенциалы тесно связаны с электрической активностью данного органа. Так, электрическая активность мозга характеризуется спектральной плотностью биопотенциалов и импульсами напряжения различной частоты. Установлено, что для человека характерны следующие биоритмы мозга (в Гц): Дельта-ритм – 0,5-3 Гц; Тета-ритм – 4-7 Гц; Альфа-ритм – 8-13 Гц; Бета-ритм – 14-35 Гц; Гамма-ритм – 36-55 Гц.

Имеются, хотя и нерегулярно, и некоторые ритмы с большей частотой. Амплитуда электрических импульсов мозга человека достигает значительной величины – до 500 мкВ.

Кто знаком с электроникой, тот знает, что при передаче информации и её обработке важна не только частота следования импульсов и их амплитуда, но и форма импульсов.

Как формируются эти импульсы? Их характеристики говорят о том, что они не могут создаваться изменениями ионной проводимости. В этом случае процессы развиваются более медленно, то есть они более инерционны. Эти импульсы могут формироваться только движением электронов, масса которых гораздо меньше массы ионов.

Роль формы электрических импульсов можно понять на примере эффективности дефибрилляции сердца. Оказалось, что эффективность восстановления работы сердца зависит от формы импульса подаваемого электрического напряжения. Важна и его спектральная плотность. Только при определённой форме импульсов происходит восстановление обычного движения зарядоносителей в живом организме, то есть восстанавливается обычная электропроводность, при которой возможно нормальное функционирование организма.

В этом методе электроды прикладываются к телу человека в области груди. Но электрические импульсы в данном случае действуют не только непосредственно на сердечную мышцу, но и на центральную нервную систему. Видимо, второй путь наиболее эффективен, поскольку возможности ЦНС по воздействию на все органы самые широкие. Команды всем органам поступают через ЦНС быстрее всего, поскольку её электропроводность значительно выше, чем электропроводность мышечных тканей и кровеносной системы. Таким образом, возвращение организма к жизни происходит в том случае, если удаётся восстановить электрофизические свойства живого вещества, а точнее специфические движения электрически зарядов с теми особенностями, которые присущи живым системам.

Решающее значение для жизни и функционирования живого организма имеют именно электрофизические свойства живого. Об этом свидетельствуют и такие факты.

Установлено, что если на человека внезапно действуют раздражающие факторы, то сопротивление тела человека электрическому току резко изменяется. Принципиально важно, что неожиданные внешние воздействия могут иметь различную физическую природу. Это может быть и яркий свет, и прикосновение горячего предмета, и сообщение человеку неожиданной, важной для него информации. Во всех случаях результат один - электропроводность тела человека увеличивается. Это изменение зависит и от силы внешнего фактора. Но во всех случаях увеличение электропроводности происходит очень быстро, а её восстановление к нормальным величинам - значительно медленнее. Быстрое изменение электропроводности может происходить только за счет электронной.

Возьмём воздействие на человека внешнего фактора (электрический ток). Последствия этого воздействия зависят не только от его величины, сколько от состояния нервной системы человека в этот момент. Смерть под действием внешнего фактора наступает в том случае, если нарушается электропроводность ЦНС. Если под действием внешних факторов движение зарядоносителей в клетках головного мозга нарушается, то происходит полное или частичное прекращение питание клеток кислородом.

Конечно, этот вопрос очень непростой. Уже сейчас установлено, что электропроводность разных живых организмов и разных систем в одном живом организме различна. Органы, которые должны быстрее всего реагировать на внешние раздражители, обладают наименее инерционной проводимостью - электронной и электронно-дырочной.

Теперь рассмотрим энергетическую систему организма.

Существуют мнения различных учёных о том, что в организм поступает энергия, которая обеспечивает его функционирование как целого, а также всех составляющих его частей. Заряды энергии могут иметь как положительные, так и отрицательные знаки. В здоровом организме имеется равновесие положительных и отрицательных элементов энергии. Это означает равновесие между процессами возбуждения и торможения. Когда же равновесие между потоками положительной и отрицательной энергии нарушены, то организм переходит в состояние болезни, поскольку нарушено равновесие процесса возбуждения и торможения.